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We use a stochastic model and direct numerical simulation to study the impact of turbulence on cloud
droplet growth by condensation. We show that the variance of the droplet size distribution increases in time
as t1=2, with growth rate proportional to the large-to-small turbulent scale separation and to the turbulence
integral scales but independent of the mean turbulent dissipation. Direct numerical simulations confirm this
result and produce realistically broad droplet size spectra over time intervals of 20 min, comparable with the
time of rain formation.
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Many multiscale processes—including nutrient foraging
of plankton, gas or dust accretion disks in astrophysics and
spray evaporation and combustion in engines [1–4]—
involve the interaction between small particles and tracers
transported in a turbulent flow. Here we focus on the case of
droplet condensation in turbulent warm (i.e. ice-free)
clouds. Clouds are a leading source of uncertainty in
climate modeling [5] due to the difficulty of accurately
parametrizing the macroscale effects of microscale physical
processes, such as the effect of droplet size distribution on
precipitation rates and cloud albedos.
The role of turbulence in cloud microphysics presents a

range of open questions [6–8], particularly as a possible
solution for the “bottleneck” problem of rain formation. All
cloud droplet populations evolve through a sequence of
steps: (1) nucleation or activation of cloud condensation
nuclei, (2) droplet growth by condensation, and (3) growth
to raindrop size by collision and coalescence. The passage
from (2) to (3) presents a bottleneck because collisional
growth is only triggered when the droplet population
acquires a sufficiently broad size distribution, but conden-
sational growth is inversely proportional to droplet radius
which intrinsically tends to narrow the size distribution.
Nonetheless, warm clouds are routinely observed to pre-
cipitate within ∼20 min of formation. Understanding the
mechanisms that break the condensational bottleneck is a
longstanding and still unresolved problem in atmospheric
physics.
Turbulence has often been invoked as a key process in

this context since it can enhance collision rates via inertial
clustering [9,10] and the so called “sling effect” [11].
Turbulence also induces fluctuations in the supersaturation
field that can potentially broaden droplet spectra in the
condensational stage [8]. Early studies using analytical
models [12,13] and direct numerical simulations (DNS)
[14] generally showed too little broadening as compared
with observations [15]. Later work attempting to simulate

large-scale turbulence in an Oð100 mÞ cloud [16–18]
showed a dramatic broadening of the droplet size spectrum
but only with ad hoc assumptions about the small-scale
supersaturation fluctuations. Lanotte et al. [19] modeled
both small- and large-scale effects on the droplet size
distribution with simulations of a cloud of 70 cm and
pointed out the importance of the Taylor Reynolds number,
Reλ, the nondimensional parameter measuring the large- to
small-scale separation in homogeneous isotropic turbu-
lence. In particular, they suggested that droplet spectral
broadening should scale with Reλ.
A question that has not been addressed so far is the long-

term fate of the droplet spectrum: does it reach a steady
state, or does it continue to evolve? The large range of
scales involved makes DNS very computationally demand-
ing, and all existing simulations consider time spans
between a few seconds and 2 min, well below the observed
rain formation time scale.
Here, we approach this question by first deriving an

analytical expression for the standard deviation of the
droplet radius squared (droplet surface area) in terms
of the thermodynamics and turbulence characteristics,
modeling the fluctuations as stochastic processes. We
demonstrate that the droplet size distribution increases
monotonically with time as t1=2. We validate this analytical
result by extending previous numerical results with DNS
and large eddy simulations (LES) to time scales compa-
rable with those of rain formation, about 20 min. Our
results imply that every warm cloud would precipitate if
given enough time. The broadening rate is determined by
the large scale turbulent motions and by the positive
correlation between droplet surface area and local
supersaturation.
Our physical model is analogous to that in [19]; a

detailed description can be found in the Supplemental
Material [20]. We assume homogeneous isotropic turbu-
lence obeying the incompressible Navier-Stokes equations
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∂u
∂t þ u ·∇u ¼ −

∇p
ρ

þ ν∇2uþ f; ð1Þ

where u is the divergence-free fluid velocity, p the
pressure, ρ the air density, f an external forcing to maintain
a statistically stationary state, and ν the kinematic viscosity.
This approximation is valid for clouds smaller than
L ≈ 100 m, which allow spatial inhomogeneity and
large-scale variations of the thermodynamic parameters
to be safely neglected. The supersaturation field s is
transported by the fluid according to

∂s
∂t þ u ·∇s ¼ κ∇2sþ A1w −

s
τs
; ð2Þ

a generalization of the Twomey model [27]. The diffusivity
of the water vapor in air is denoted by κ, w is the velocity
component in the gravity direction, and A1w is a source or
sink term of supersaturation resulting from the variation in
temperature and pressure with height. The supersaturation
relaxation time τs depends on droplet concentration and
dimensions [28], τ−1s ¼ 4πρwA2A3

P
Ri=V where Ri are

the radii of the droplets in the volume V, ρw the water
density, and A1, A2, and A3 thermodynamic coefficients
[19]. The droplets are assumed to behave as rigid spheres
smaller than the Kolmogorov turbulent scale, at low mass
fraction to neglect feedback on the flow. The only forces
governing the droplet motion are gravity and the Stokes
drag (nucleation and activation are not considered):

dvd
dt

¼ uðxd; tÞ − vd
τd

− gez;
dxd

dt
¼ vd ð3Þ

with xd and vd the droplet position and velocity, uðxd; tÞ
the fluid velocity at droplet position, τd ¼ 2ρwR2

i =ð9ρνÞ the
droplet relaxation time, and g the gravitational accelera-
tion. The supersaturation at the droplet position, sðxd; tÞ,
determines the droplet evolution via

dR2
i

dt
¼ 2A3sðxd; tÞ: ð4Þ

An exact equation for the average of the droplet radius
fluctuations is obtained from (4),

dhðR20
i Þ2i

dt
¼

dσ2R2

dt
¼ 4A3hs0R20 i ð5Þ

showing that hðR20
i Þ2i increases linearly with time only if

the correlation hs0R20 i reaches a nonzero statistical steady
state.
To quantitatively estimate the droplet growth, we adopt a

1D stochastic model for the velocity fluctuations wi and the
supersaturation field s0i of the ith droplet. Such an approach
implicitly assumes that the small-scale turbulent motions

have a negligible influence on the macroscopic observ-
ables. This assumption is motivated by previous results
revealing the broadening of the droplet size distribution
with Reλ [19] and fully justified a posteriori by the
numerical simulations presented below.
Homogeneous isotropic turbulence and supersaturation

are modeled with two Langevin equations [29]:

w0
iðtþ dtÞ ¼ w0

iðtÞ −
w0
iðtÞ
T0

dtþ vrms

ffiffiffiffiffiffiffiffiffi

2
dt
T0

s

ξiðtÞ; ð6Þ

where vrms is the root mean square of the turbulent velocity
fluctuations, ξðtÞ is a zeromean Gaussian white noise,
nondimensionalized in order to be δ correlated in time and
T0 the turbulence integral time scale, and

s0iðtþ dtÞ ¼ s0iðtÞ −
s0i
T0

dtþ A1w0
idt −

s0i
hτsi

dt

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1 − C2
wsÞhs02i

2dt
T0

s

ηiðtÞ

þ Cws

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hs02i 2dt
T0

s

ξiðtÞ ð7Þ

for the supersaturation with forcing from the velocity field.
Here Cws ¼ hw0s0i=ðvrms

ffiffiffiffiffiffiffiffiffi
hs02i

p
Þ is the normalized veloc-

ity-supersaturation correlation, and hτsi is the supersatu-
ration relaxation time based on the mean droplet radius and
ηðtÞ zero-mean Gaussian white noise, δ correlated in time.
Equation (7) represents a stochastic version of the Twomey
model. The mean updraft is zero as the mean supersatu-
ration (the mean droplet radius does not change); entrain-
ment effects [30], collisions, and inhomogeneities are also
not considered to analyze the conservative case when the
droplet spectral broadening is only induced by supersatu-
ration fluctuations.
From (4), (6), and (7), assuming hτsi ≪ T0 as in real

clouds, the fluctuation correlations become

dhs0R20 i
dt

¼ A1hw0R20 iþ 2A3hs02i −
hs0R20 i
hτsi

; ð8Þ

dhw0R20 i
dt

¼ 2A3hw0s0i − hw0R20 i
T0

; ð9Þ

dhs02i
dt

¼ 2A1hw0s0i − 2
hs02i
hτsi

; ð10Þ

dhw0s0i
dt

¼ A1v2rms −
hw0s0i
hτsi

: ð11Þ

Assuming statistically quasisteady state conditions
(dhi=dt ¼ 0) we find that hs02iqs ¼ A2

1v
2
rmshτsi2 and
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hs0R20 iqs ¼ 2A3A2
1v

2
rmshτsi2T0 ¼ 2A3hs02iqsT0 ð12Þ

which give, using (5),

σR2 ¼
ffiffiffi
8

p
A3A1vrmshτsiðT0tÞ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8hs02iqs

q
A3ðT0tÞ1=2:

ð13Þ

The model shows that the variance of the droplet distri-
bution increases monotonically in a turbulent flow even
though the supersaturation fluctuations reach a statistical
steady state sqs. The correlation hs0R20 iqs, which is directly
responsible for the radius growth rate, is proportional to the
level of fluctuations of the supersaturation field and to the
integral scale of the turbulence; see (12). Expression (13)
can be formulated in terms of Kolmogorov scales since
vrms ≃ Re1=2λ vη and T0 ≃ 0.06Reλτη [29]:

σR2 ≃ 0.7A3A1ν1=2hτsiReλt1=2: ð14Þ

Note that for t ¼ T0 (short compared with rain formation
time) the lower limit proposed in [19] is recovered,
σR2 ≃ Re3=2λ . From (14) we note that σR2 at a fixed time
depends only on the scale separation represented by Reλ
and not on the value of the mean dissipation inside the
clouds. This implies that clouds with different dissipation
rate and same Reynolds number have an identical behavior
in terms of droplet growth by condensation. The droplet or
turbulence condensation dynamics does not depend on the
turbulent small scales: the correlation between the super-
saturation field and the droplet surface area, governing the
distribution broadening, is determined by the large flow
scales. This result is in contrast with the belief that the
variance of the droplet distribution should not grow
indefinitely as turbulence tends to decorrelate the particle
size from the local saturation field [8].
To test our predictions, we run simulations by gradually

increasing the size of the computational clouds from a few
centimeters to 100 m. The governing equations (1)–(4) are
solved with a classical pseudospectral code for the fluid
phase coupled with a Lagrangian algorithm for the droplets
[31]. All cases share the same turbulent kinetic energy
dissipation ε ¼ 10−3 m2 s−3, a value typically measured in
stratocumuli. This corresponds to the same small-scale
dynamics, with Kolmogorov scale η ¼ ðν3=εÞ1=4 ≈ 1 mm,
Kolmogorov time τη ¼ ðν=εÞ1=2 ≈ 0.1 s, and velocity
vη ¼ η=τη ≈ 1 cm=s. We examine droplets with two differ-
ent initial radii, 13 μm and 5 μm, denoted as case 1 and 2,
with supersaturation relaxation time τs ¼ 2.5 and 7 s, and
same concentration (130 droplets per cm3). The reference
temperature and pressure are θ0 ¼ 283 K and P ¼ 105 Pa,
with A1 ¼ 5 × 10−4 m−1, A2 ¼ 350 m3=kg, and
A3 ¼ 50 μm2=s. The simulation parameters are reported
in Table I. Note that simulation DNS E1, carrying order 109

droplets, is to the best of our knowledge the largest direct
numerical simulation of a warm cloud ever performed.

The time evolution of σR2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðR20Þ2i

q
is shown in

Fig. 1 for all cases investigated. The data confirm the
predictions from (13), i.e. that σR2 ∝ t1=2.
The correlation hs0R20 i is displayed in the inset of Fig. 1

(thin solid line). In all cases, hs0R20 i reaches a statistical
steady state, fluctuating around the value determining the
growth of σR2 . The turbulence creates a positive correlation
between supersaturation and droplet surface area fluctua-
tions that increases as the turbulent scale separation—i.e.
the cloud size—increases. The agreement between the
model and the numerical data is remarkable for the largest
domain sizes where scale separation is significant and

TABLE I. Parameters of the simulations. The resolution N, the
cloud size Lbox, the root mean square of the turbulent velocity
fluctuations vrms, and TL ¼ Lbox=vrms an approximation of the
large turbulent scales. T0 indicates the integral time T0 ¼
ðπ=2v3rmsÞ

R
½EðkÞ=k&dk with k the wave number and EðkÞ the

turbulent kinetic energy spectra [29]. The total number of
droplets is indicated by Nd.

Lbox vrms TL T0

Label N3 ½m& ½m=s& ½s& ½s& Reλ Nd

DNS A1=2 643 0.08 0.035 2.3 0.64 45 6 × 104

DNS B1=2 1283 0.2 0.05 4 0.95 95 9.8 × 105

DNS C1=2 2563 0.4 0.066 6 1.5 150 9 × 106

DNS D1 10243 1.5 0.11 14 3 390 4.4 × 108

DNS E1 20483 3 0.12 30 4 600 3. × 109

LES F1 5123 100 0.7 142 33 5000 1.3 × 1014
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FIG. 1 (color online). Root mean square of the square droplet
radius fluctuations σR2 versus time from simulations (symbols)
and the prediction of the stochastic model (13) (lines). Inset:
correlation hs0R20 i from simulations (thin lines) and from Eq. (12)
(thick lines).
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viscous effects can be neglected. For small Reλ, viscous
effects are important and the stochastic inviscid model
overestimates the correct behavior. For a detailed compari-
son between DNS and stochastic model, see the
Supplemental Material [20].
To test the model for a larger cloud size, we perform a

large eddy simulation (LES F1) of a cloud of about 100 m.
LES can be seen as a good model for our problem since it
fully resolves the larger flow scale, those relevant to droplet
condensation or evaporation, as shown above. For numeri-
cal details see the Supplemental Material [20]. The Taylor
Reynolds number is 5000. The time evolutions of σR2 and
of hs0R20 i are depicted in Fig. 2 together with the analytical
predictions from (12) and (13). The agreement between the
two fully validates our model.
To motivate the use of the variance σ2R2 to define the

droplet size distribution, we show in Fig. 3 that its
probability distribution is Gaussian, in agreement with
measurements in real stratocumuli [32]. The data in the
figure refer to the final simulation time (about 20 min) and
are compared to Gaussian distributions of equal variance;
note that error bars are about the same size as the plotting
symbols and not visible in the plot. The size distribution
from the LES of the large cloud (see inset) reveals that the
Gaussian can be fitted just using the value of σR2 from the
stochastic model also at this higher Reynolds number.
In summary, we have derived an analytical expression for

the role of turbulence on the dynamics of droplet condensa-
tion and validated it against large-scale numerical simula-
tions. We show that the standard deviation of the square
droplet radius fluctuations, σR2 , increases in time as t1=2; the

growth rate depends linearly on the turbulent scale separation
parametrized by Reλ. As shown in Fig. 2, for a cloud with
Reλ ¼ 10000—a typical value estimated in cumuli with
integral scale of 100 m [8]—our expression predicts that σR2

reaches values in line with observations in real clouds (see
[15], their Fig. 4) on time scales of less than 20 min.
The stochastic approach proposed here may be general-

ized to consider additional physics and adapted to different
microscale phenomena in turbulent environments; this may
also require a numerical solution of the governing Langevin
equations, something still order of magnitudes cheaper than
a fully-resolvedDNS. Indeed our analytical relation predicts
numerical results requiring 1017 degrees of freedom. From a
practical viewpoint, this indicates the promising potential of
modeling approaches based on PDFs.
Our results represent a lower limit for the impact of

turbulence on warm rain formation since real clouds
typically exceed 100 m in scale and are in general
nonhomogeneous, featuring a fluctuating temperature field
and vigorous entrainment of relatively dry air from outside
the cloud leading to enhanced supersaturation fluctuations
within the cloud. These additional effects would lead to
even larger values of σR2 , more than sufficient to explain the
spectral broadening observed in real clouds.

This work was supported by the Swedish e-Science
Research Centre SeRC, and by the European Research
Council Grant No. ERC-2013-CoG-616186, TRITOS.
Computer time provided by SNIC (Swedish National
Infrastructure for Computing) is gratefully acknowledged.
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SECTION A. EULERIAN-LAGRANGIAN
PHYSICAL CLOUD MODEL

Derivation of the supersaturation equation

The equation governing the evolution of the supersat-
uration can be derived from first principles, vapor mass
and energy conservation, and thermodynamics relations.
Since the supersaturation is a thermodynamic variable
(as temperature, internal energy and entropy) one can
write a conservation equation. The original derivation
by Twomey that can be found in textbooks of atmo-
spheric physics is obtained neglecting the effects of vis-
cosity [1, 2], which we include below in the most general
case.

The supersaturation s is defined as s = qv/qvs − 1
where qv is the vapor mixing ratio and qvs its saturated
value. The supersaturation rate of change is obtained by
differentiating its definition:

Ds

Dt
=

1

qvs

Dqv
Dt
− qv
q2vs

Dqvs
Dt

(1)

The vapor mixing ratio follows the conservation equation:

Dqv
Dt

= Dv∇2qv − Cd (2)

where Dv is the thermal diffusivity of water vapor in air
and Cd is the condensation rate. An evolution equation
for qvs is obtained from the Clasius-Clapeyron equation
linking supersaturation pressure es with temperature θ:

Dqvs
Dt

=
D

Dt

(
εes
p

)
=
ε

p

Des
Dt
− εes
p2

Dp

Dt
=

=
ε

p

des
dθ

Dθ

Dt
− εes
p2

Dp

Dt
=

εLes
pRvθ2

Dθ

Dt
− εes
p2

Dp

Dt
(3)

where ε is the ratio between water and dry air molecular
weights, p is the thermodynamic pressure, Rv is the gas
costant for water vapor and L is the latent heat of evap-
oration. The temperature θ obeys energy conservation:

Dθ

Dt
= κθ∇2θ − g

cp
w +

L

cp
Cd (4)

where kθ is the thermal diffusivity, g the gravity accel-
eration, cp is the specific heat at costant pressure and w

the vertical fluid velocity component. The pressure p can
be obtained from hydrostatic equilibrium:

Dp

Dt
= − gp

Raθ
w (5)

where Ra is the gas costant for dry air. Substituting Eqs.
(5) and (4) in Eq. (3) results in:

Dqvs
Dt

=

(
εesg

pRaθ
− εesgL

pRvθ2cp

)
w+

εeskθL

pRvθ2
∇2θ+

εesL
2

pRvθ2cp
Cd

(6)
and consequently Eq. (1) becomes:

Ds

Dt
=

1

qvs
Dv∇2qv −

Cd
qvs

+
s+ 1

qvs

(
εesgL

pRvθ2cp
− εesg

pRaθ

)
w+

− s+ 1

qvs

εeskθL

pRvθ2
∇2θ − s+ 1

qvs

εesL
2

pRvθ2cp
Cd. (7)

Assuming s � 1 and substituting the expression of qvs,
the previous equation reads:

Ds

Dt
=

(
gL

Rvθ2cp
− g

Raθ

)
w −

(
p

εes
+

L2

Rvcpθ2

)
Cd

+
pDv

εes
∇2qv −

kθL

Rvθ2
∇2θ, (8)

where we defined

A1(θ) =
gL

Rvcpθ2
− g

Raθ
(9)

A2(θ) =
Raθ

εes(θ)
+
εL2

pθcp
(10)

A3(θ) =

(
ρwRvθ

Dves(θ)
+

ρwL
2

kθRvθ2

)−1
(11)

and

Cd =
4πρwA3

ρV
s
∑

Ri (12)

The supersaturation relaxation time is

τs(θ) =
(

4πρwA2(θ)A3(θ)
∑

Ri/V
)−1

(13)

where ρw is the water density and Ri are the radii of
the droplets in the volume V . Eq. (8) can be exactly
re-written as

Ds

Dt
= A1w −

s

τs
+
pDv

εes
∇2qv −

kθL

Rvθ2
∇2θ. (14)
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The only assumption in the model is introduced now,
assuming the diffusive terms proportional to the laplacian
of the supersaturation

k∇2s =
pDv

εes
∇2qv −

kθL

Rvθ2
∇2θ (15)

obtaining the final equation for the supersaturation field

Ds

Dt
= A1w −

s

τs
+ k∇2s. (16)

Given the high Reynolds numbers inside clouds it appears
reasonable to assume that diffusion and viscous effects
are much smaller than the convective transport. Indeed,
we will show in Section B that the diffusive term does
not affect the supersaturation for large cloud dimensions.
The term A1w is a source/sink term of supersaturation
resulting from the variation in temperature and pressure
with height.

Model equations and parameters

The complete Eulerian set of equations for the turbu-
lent velocity field u, the supersaturation s, the temper-
ature fluctuations θ, the vapor mixing ratio qv and the
buoyancy B therefore reads

∇ · u = 0, (17)

∂u

∂t
+ u · ∇u = −∇p

′

ρ
+ ν∇2u +Bez + f , (18)

∂s

∂t
+ u · ∇s = κ∇2s+A1(θ)w − s

τs(θ)
, (19)

∂θ

∂t
+ u · ∇θ = κθ∇2θ − g

cp
w +

L

cp
Cd, (20)

qv = qvs(θ)(s+ 1), (21)

B = g

[
θ − θ0
θ0

+ ε(qv − qv0)− qw
]
. (22)

The velocity field u obeys the Navier-Stokes-Boussinesq
equations, (18), where p′ is the pressure deviation from
its hydrostatic value, ρ is the density of air, f an external
forcing acting just at the larger turbulent scales, ν the
kinematic viscosity. The external forcing f maintains a
turbulent field in the steady state regime.

In the most general cases turbulent clouds are a tran-
sient phenomenon. The transient effects are relevant
when observing the cloud for its whole life-time, espe-
cially during the cloud generation and dissipation phase.
The total life-time of a cloud is of the order of hours/days;
however, if we study droplet condensation for time inter-
vals of the order of minutes, we can consider the sys-
tem at quasi statistical steady-state, as shown by ex-
perimental observations in real clouds as shallow cu-
mulus clouds [3] and marine stratocumulus clouds [4].

Most of the DNS of clouds available in literature as-
sume steady state turbulence [5–9]. The temperature
follows the advection-diffusion equation (20). Equation
(21) links the vapor mixing ratio qv, with its saturated
value qvs = qvs(θ, s) function of the temperature and
the supersaturation field. The momentum equation is
forced by the buoyancy field B, expressed by equation
(22), where θ0 is the reference temperature, qv0 is the
vapor mixing ratio at θ0 and s = 0, qw is the water mix-
ing ratio and represents the droplet drag on the flow. In
adiabatic cloud cores, the buoyancy effects are assumed
to be negligible [10].

The Eulerian fields are coupled with the Lagrangian
equation for the droplet evolution:

dvd

dt
=

u(xd, t)− vd

τd
− gez, (23)

dxd

dt
= vd, (24)

dR2
i

dt
= 2A3(θ)s(xd, t) (25)

with xd and vd the droplet position and velocity, u(xd, t)
and s(xd, t) the fluid velocity and supersaturation field
at droplet position, τd = 2ρwR

2
i /(9ρν) the droplet relax-

ation time. The droplets are assumed to be spherical,
with radius smaller than the Kolmogorov scale in order
to be considered point-particles. The only forces acting
on the droplets are the Stokes drag and the gravitational
force.

Computational methodology

The numerical data set described in the manuscript
has been obtained from Direct Numerical Simulations
(DNS) using a classical pseudo-spectral method for the
Eulerian equations coupled with a Lagrangian solver for
the droplets. For the fluid phase, the Navier–Stokes–
Boussinesq equations have been integrated in a three-
periodic domain using a Fourier spectral method with
the nonlinear terms de-aliased by the 3/2 rule. The solu-
tion is advanced in time using a third-order low-storage
Runge–Kutta method; specifically, the nonlinear terms
are computed using an Adam–Bashforth-like approxima-
tion while the diffusive terms are analytically integrated
[11]. The random forcing f is applied isotropically to the
first shell of wave vectors, with fixed amplitude, constant
in time and uniformly distributed in phase and directions
[12]. For the dispersed phase, we use the point-particle
approximation as typical droplet sizes are smaller than
the flow Kolmogorov length. The same Runge–Kutta
temporal integration used for the carrier phase is adopted
for the Lagrangian equations. A trilinear interpolation
scheme is used to compute the flow velocity, supersatu-
ration and temperature at the particle position. The cor-
respondent trilinear extrapolation scheme is adopted to



3

transfer the information from the droplet location (super-
saturation, radius, temperature) into the Eulerian grid.
The code is fully MPI parallelized to be efficiently run
on supercomputing infrastructures with a performance
linearly scaling up to 104 cores.

SECTION B. NUMERICAL MODELS

Constant coefficient model

The system of differential and algebraic equations (1-
14) can be simplified assuming that the coefficients A1,
A2, A3 are only function of the reference temperature
θ0, i.e. the temperature fluctuations can be neglected for
their calculation [7, 9], and the buoyancy term can be ne-
glected as well [10]. To check and quantify the order of
magnitude of the temperature fluctuations, we performed
a preliminary DNS simulation solving the complete sys-
tem (1-14). The simulation matches the parameters de-
scribed in case DNS D1 of the manuscript. In particular,
we simulate a cloud of length Lbox = 1.5 m, velocity
fluctuations vrms = 0.1 m/s, Taylor Reynolds number
Reλ = 390 with a resolution of 10243 grid points and
4.4 × 108 Lagrangian droplets. From the numerical re-
sults we obtain a negligible value of the temperature root
mean square θrms = 5× 10−3 K. Since, the supersatura-
tion depends on a non-trivial way on the turbulent field
via the quantities A2, A3, τs and the Clasius-Clapeyron
equation, it is relevant to examine the behavior of its
probability distribution function (pdf). Figure 1 shows
the pdf of the supersaturations fluctuations for the full set
of equations (DNS): the behavior is Gaussian and equal
to the two results from the constant coefficient model
reported in the manuscript.

Direct Numerical Simulation (DNS) of the reduced
model

As seen in the previous paragraph, we can assume that
the temperature field is constant in time and space and
equals to its reference value θ0 for the calculation of the
constants A1, A2 and A3 while the fluctuations still af-
fect the evaporation-condensation via the supersatura-
tion equation. This has two consequences: the physics
of the system is simpler to investigate and the numerical
solver is faster since the equations are more easy to man-
age. Under the simplifying hypothesis the system (1-14)
reduces to:

s

p
d
f(

s)

­0.0002 0 0.0002
10
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Gaussian

FIG. 1: Probability distribution function of the supersatura-
tion fluctuations extracted by the DNS simulation (symbols)
and comparison with its Gaussian fit (line).

∇ · u = 0, (26)

∂u

∂t
+ u · ∇u = −∇p

′

ρ
+ ν∇2u + f , (27)

∂s

∂t
+ u · ∇s = κ∇2s+A1w −

s

τs
, (28)

dvd

dt
=

u(xd, t)− vd

τd
− gez, (29)

dxd

dt
= vd, (30)

dR2
i

dt
= 2A3s(xd, t) (31)

where A1, A2 and A3 are constant that depends on
the reference temperature θ0. The system (15-20) can be
numerically solved without any further hypothesis, sim-
plifications or models via Direct Numerical Simulations.
In the manuscript we performed 8 different DNS cases de-
scribed, see Table I, the largest corresponding to a cloud
of the order of Lbox = 3 m (DNS E1) with a resolution
of 1010 degrees of freedom including the Eulerian grid
points (20483) and Lagrangian droplets (3× 109).

Large Eddy Simulation (LES)

Since the largest DNS simulation allows us to describe
core clouds of the order of 3 meters, we need to employ
Large Eddy Simulations (LES) to study clouds with size
of about 100 meters. The LES equations are obtained
from the DNS system by applying a low-pass filter to the
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Eulerian fields that remove the smallest scales. In this
way, just the large scales are evolved while the effects
of the small scales on the large ones is modeled. The
generic Eulerian field f can be decomposed in a filtered
or resolved component f̄ and a residual or subgrid-scale
component fsgs. Applying the filter operator to the sys-
tem (15-20), we obtain:

∇ · ū = 0, (32)

∂ū

∂t
+ ū · ∇ū = −∇p̄

ρ
+ ν∇2ū + f̄ +∇ · τ̄sgs, (33)

∂s̄

∂t
+ ū · ∇s̄ = κ∇2s̄+A1w̄ −

s̄

τs
+∇ · J̄sgs, (34)

dvd

dt
=

ū(xd, t) + usgs(xd, t)− vd

τd
− gez, (35)

dxd

dt
= vd, (36)

dR2
i

dt
= 2A3 (s̄(xd, t) + ssgs(xd, t)) (37)

where τ̄sgs, J̄sgs, usgs and ssgs are respectively the sub-
grid stress tensor, the subgrid supersaturation flux, the
subgrid velocity and the subgrid supersaturation. The
subgrid terms should be described using suitable closure
models, which introduce an unavoidable approximation
of the physics with respect to the DNS. Here, the sub-
grid stress tensor τ̄sgs and the subgrid supersaturation
flux J̄sgs are modelled with to the classic Smagorinski
closure [13]. The subgrid terms appearing in the La-
grangian droplet equation usgs and ssgs are set to zero
so to consider our LES results as a lower limit for the
droplet size distribution in the cloud. Infact, consider-
ing the temporal evolution of the droplet square radius
fluctuations:

d〈(R2′

i )2〉
dt

=
dσ2

R2

dt
= 4A3

(
〈s̄′R2′〉+ 〈s′sgsR2′〉

)
(38)

we are implicitly assuming that the subgrid correlations
〈s′sgsR2′〉 are much smaller than the resolved scale corre-

lations 〈s̄′R2′〉. This is justified by the DNS results rep-
resented in the inset of figure 1 of the main manuscript
where the correlation 〈s′R2′〉 is displayed. The figure
shows that the large DNS gives values of this correlation
two order of magnitude larger than that from the smaller
simulations.

Another approximation introduced in the LES is re-
lated to the number of droplets tracked in the simula-
tion. Theoretically, one should evolve order 1014 droplets
which is unfeasible. We therefore use the method of
droplet renormalization described in [7]. We validated
the LES by comparing the results with our finest DNS
simulation, DNS E1. Different LES simulations have
been performed with different resolutions down to 323

grid points. The root mean square of the square droplet
radius fluctuations (top panel) and of the supersaturation
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FIG. 2: Top panel: comparison between the root mean square
of the square droplet radius fluctuations σR2 versus time for
the LES (symbols) and the DNS simulations. Bottom panel:
comparison between the root mean square of the supersatu-
ration fluctuations versus time for the LES (symbols) and the
DNS simulations.

fluctuations (bottom panel) are shown in figure 2 for the
DNS and LES. The LES slightly underestimates the ob-
servable σ2

R2 and srms as expected from equation (38).
The agreement between LES and DNS is excellent consid-
ering that we used 105 degrees of freedom against 1010 for
the DNS. This implies that just solving the larger scales
is enough to provide a good prediction of the droplet size
spectra variance. In conclusion, the LES simulation is
able to give a lower limit of the droplet spectra broaden-
ing at a moderate computational cost.
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FIG. 3: Top panel: Relative error pertaining the quasi steady-
state supersaturation fluctuation variance in the stochastic
model (SM) and DNS. Bottom panel: ratio between the
droplet sink term and the source term in the supersaturation
variance equation (28).

Stochastic model (SM)

The other approach we used in our work is the stochas-
tic model described by the equations (6-7) in the main
manuscript. We show in the main text that the stochastic
model tends to overestimate the droplet-related quanti-
ties and that the differences become smaller by increasing
the ratio between the large and the small scales in the nu-
merical simulations. A systematic study of the difference
between the stochastic model and the DNS is presented
in this section.

The relative error pertaining the quasi steady-state
value of the supersaturation fluctuation variance is re-
ported in the top panel of figure 3 versus the cloud size
domain (the size of the computational domain and the
large-to-small scale ratio). A large error is evident for
clouds of smaller size and the differences are monotoni-
cally decreasing when increasing the large-to-small scale
ratio (i.e. the Reynolds number). For clouds that are of
the order of 100 meters, our prediction has a margin of
error lower than 20 %, an acceptable value for statistical
observables that DNS cannot calculate with the current
computational resources.

The error in the stochastic model can be explained by
viscous effects in the supersaturation fluctuations. Mul-
tiplying equation (17) with the supersaturation fluctua-
tions and averaging, we obtain an equation for the su-
persaturation variance:

∂〈s′2/2〉
∂t

+∇ · 〈u′s′2/2〉 = −κ〈(∇s′)2〉+A1〈w′s′〉− 〈
s′2

τs
〉

(39)
where the left hand side is zero at statistically steady
state, and a balance between three terms holds: viscous
dissipation κ〈(∇s′)2〉, production A1〈w′s′〉 and droplet
sink 〈s′2/τs〉. In the case of the classic inviscid Twomey
equation (employed also in the stochastic model) the bal-
ance is only between production and the droplet sink
terms, and viscous effects are neglected. To quantify the
differences between the inviscid and viscid Twomey equa-
tion, we display the ratio between the droplet sink and
the production term as extracted from the DNS in the
bottom panel of figure 3, where a value of this ratio equal
to 1 corresponds to an inviscid behavior as assumed in
the Towmey model. For smaller clouds, the ratio is about
0.5 so that just half of the supersaturation fluctuations
induce the droplet growth while the remaining is diffused.
This explain why the stochastic model, neglecting diffu-
sion, is not able to predict the DNS results. By increasing
the Reynolds number and the size of the cloud, the ratio
〈s′2/τs〉/A1〈w′s′〉 tends to 1, meaning that the viscous
effects become more and more negligible (they vanish in
the limit of infinite Reynolds number). Therefore, the
stochastic model effectively predicts an upper limit for
the droplet spectral broadening at a zero computational
cost. In conclusion, the DNS results will always lie be-
tween the LES estimation (lower limit) and the stochastic
model prediction (upper limit).
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