Impacts of high-latitude volcanic eruptions on ENSO and AMOC

Francesco S. R. Pausata,a,b,c Leon Chafik,b,d,e Rodrigo Caballero,a and David S. Battisti,a,b,c

*Department of Meteorology, Stockholm University and Bolin Centre for Climate Research, 10691 Stockholm, Sweden; bNational Oceanic and Atmospheric Administration/National Environmental Satellite, Data, and Information Service Center for Satellite Application and Research, College Park, MD 20740; cCooperative Institute for Climate and Satellites, University of Maryland, College Park, MD 20740; dDepartment of Atmospheric Sciences, University of Washington, Seattle, WA 98195; and eUni Research, 5008 Bergen, Norway

Edited by Benjamin D. Santer, Lawrence Livermore National Laboratory, Livermore, CA, and approved September 16, 2015 (received for review May 11, 2015)

Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2–3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8–9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño–Southern Oscillation (ENSO).

Proxy data (1, 2) suggest that the strong reduction of surface insolation over the tropics associated with tropical volcanic eruptions may increase the likelihood of the El Niño–Southern Oscillation (ENSO) and a consequent reduction of the zonal sea surface temperature (SST) gradient along the equatorial Pacific. Modeling studies do not yield consistent results and show both an El Niño-like (3–5) or La Niña-like (6, 7) anomalies following a tropical eruption. Recent studies have also suggested that volcanic eruptions can have a large imprint on ocean circulation, affecting the strength of the Atlantic Meridional Overturning Circulation (AMOC) (8–12) on 5- to 20-y timescales and inducing ocean heat content (OHC) anomalies (13, 14) that may persist for decades. However, this slow recovery has been questioned and may be an artifact of experimental design (15). Furthermore, all previous work on the climate impact of volcanic eruptions has focused on tropical volcanoes; no studies have addressed the potential effects of high-latitude eruptions on ENSO. Here, we use a coupled atmospheric–ocean–aerosol model [Norwegian Earth System Model: NorESM1-M (16, 17)] to identify the mechanisms by which high-latitude volcanic eruptions can impact ENSO behavior in both the short term (up to 2–3 y) and long term (approximately half-century), the latter being mediated by volcano-induced changes in ocean circulation.

We simulate an extreme high-latitude multistage eruption starting on June 1st. We inject 100 Tg of SO2 and ash—as an analog for the ash injection—mostly into the upper-troposphere/lower stratosphere over a 4-mo period. The eruption is composed of eight injections, each lasting for 4 d and spaced out every 15 d (SI Appendix, Table S1). This experimental design was chosen as analog for one of the strongest high-latitude eruptions in historical time, the 1783 Laki eruption in Iceland. The simulated volcanic eruption starts from a specific year selected from a transient historical simulation (1850–2005). An ensemble of simulations (ENSv) is generated by slightly perturbing the initial conditions of the day of the eruption. In the same fashion, we generate an equivalent no-volcano ensemble (ENS0v) where the volcanic aerosol concentration is set to background conditions (SI Appendix). The climate perturbation induced by the volcanic eruption (ΔE) can be simply expressed as ΔE = STATEv − STATE0v, where STATE0v is the unperturbed climate state, and STATEv is the climate state induced by the eruption. To examine the short-term impact on ENSO, we analyze the simulations described by Pausata et al. (18) in which ENS0v and ENSv are composed of 20 pairs of simulation, each pair being integrated for 4 y. Here, we extend 10 of these pairs of simulations out to 60 y after the eruption to investigate its long-term impact on the AMOC, OHC, and the spatiotemporal properties of ENSO.

Short-Term Impacts on ENSO

Our results show that the simulated volcanic eruption generates an aerosol plume that is strictly confined to the Northern Hemisphere in the months following the eruption, with no direct radiative forcing on the tropical zone (SI Appendix, Fig. S1). Despite this latitudinally restricted forcing, anomalous El Niño-like conditions relative to the no-volcano case appear in the tropical Pacific, peaking between 4 and 9 mo after the beginning of the

Significance

In the model simulations analyzed here, large high-latitude volcanic eruptions have global and long-lasting effects on climate, altering the spatiotemporal characteristic of the El Niño–Southern Oscillation (ENSO) on both short (<1 y) and long timescales and affecting the strength of the Atlantic Meridional Overturning Circulation (AMOC). In the first 8–9 mo following the start of the eruption, El Niño-like anomalies develop over the equatorial Pacific. The large high-latitude eruptions also trigger a strengthening of the AMOC in the first 25 y after the eruption, which is associated with an increase in ENSO variability. This is then followed by a weakening of the AMOC lasting another 30–35 y, associated with decreased ENSO variability.

Author contributions: F.S.R.P. designed and performed research; F.S.R.P. and L.C. analyzed data; L.C., R.C., and D.S.B. contributed to the interpretation of the model results; F.S.R.P. wrote the paper; and L.C., R.C., and D.S.B. contributed to the writing of the manuscript.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

Freely available online through the PNAS open access option.

1To whom correspondence should be addressed. Email: francesco.pausata@misu.su.se.

1This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509153112/-/DCSupplemental.
eruption (Fig. 1 B and C). The El Niño-like anomaly is followed by cold (La Niña-like) anomalies in the second and third year (Fig. 1C and SI Appendix, Fig. S5). The El Niño-like anomaly is caused by the strong cooling of the extratropical Northern Hemisphere following the eruption (Fig. 1A). It is well established that such interhemispherically asymmetric forcing pushes the Intertropical Convergence Zone (ITCZ) away from the hemisphere that is cooled (19, 20). Hence, the simulated high-latitude eruption causes a southward shift of the ITCZ of ~5–6° latitude over the Pacific Ocean, bringing the ITCZ closer to the equator during the fall and winter following the eruption (Fig. 1A and SI Appendix, Figs. S2 and S3). Because surface easterly winds are weakest in the proximity of the ITCZ, this equatorward shift implies a weakening of the easterly winds along the equator in the central and eastern equatorial Pacific (i.e., a westerly anomaly; Fig. 1B and SI Appendix, Fig. S4). This leads via the Bjerknes feedback (21) to a reduction in the east–west temperature contrast across the tropical Pacific, thus favoring an El Niño-like anomaly. The El Niño-like anomaly is a function of the Northern Hemisphere cooling, but may be influenced by the preexisting ENSO state: a stronger El Niño-like response may develop under La Niña compared with El Niño preexisting conditions (SI Appendix, Fig. S5).

In light of our results, we find intriguing that the El Niño event that peaked in January of 1912, 6 mo before the Katmai eruption in June of 1912 (the largest high-latitude eruption of the 20th century), was immediately followed by near-normal conditions in the tropical Pacific rather than the La Niña conditions that normally occur after El Niño events. Another El Niño event occurred a year after the eruption (SI Appendix, Fig. S6). Furthermore, tree-ring data (22) suggest that the El Niño conditions preceding the Laki eruption were further strengthened in the winter of 1783–1784 (6–9 mo after the beginning of the eruption), in agreement with our findings. However, further evidence would be needed to test our model results using observations.

Long-Term Impacts on ENSO and AMOC

The impacts of a multistage high-latitude volcanic eruption may not be limited to the first few years following the eruption: our model experiment also shows strong effects on SST variability in the Nino3.4 region and much of the eastern equatorial Pacific that persist for nearly a half-century following the eruption (Fig. 2). Impacts on ENSO frequency, on the other hand, are weak and not statistically discernible (SI Appendix, Tables S3 and S4). ENSO variability increases in the first 25 y following the eruption (Fig. 2A), whereas it is reduced in the last 35 y of the simulation (years 26–60), particularly between 26 and 45 y after the eruption (Fig. 2B and SI Appendix, Table S2) after which ENSO variability reverts to normal (Fig. 2C).

Along with these changes in ENSO variability, we also find marked changes in the AMOC (Fig. 3A). After a brief (<6-mo) weakening of the AMOC, a progressive AMOC strengthening takes place and peaks with a maximum anomaly of about 1.5 Sverdrup (Sv) (1 Sv = \(10^6\) m³/s) between 5 and 10 y after the eruption (Fig. 3A). Thereafter, the AMOC starts to slow down and reaches a minimum (~1 Sv below that in the unperturbed ensemble) about 35–40 y after the eruption. Although a slow recovery is apparent after this period, the AMOC remains significantly weaker than in the no-volcano ensemble from 25 y after the eruption until the end of the analyzed period. The negative radiative forcing from the volcanic aerosol results in a surface cooling that develops during the first 1–3 y after the eruption (SI Appendix, Fig. S8A) and is gradually transferred into the deep ocean (Fig. 3B). The surface cooling also causes reduced...
precipitation (SI Appendix, Figs. S3 and S8) and consequently reduced river runoff at mid-to-high latitudes of the Northern Hemisphere. Cooler, more saline surface conditions in the first 2 or 3 y (SI Appendix, Fig. S9) increase the density of the surface water in the higher latitudes of the Northern Hemisphere that act to destabilize the water column, leading to enhanced oceanic convection in the North Atlantic (SI Appendix, Fig. S10) and a spin-up of the AMOC. The strengthening of the AMOC as well as the mechanisms involved are similar to those proposed for tropical eruptions (9, 10): here, we show that the impact on the AMOC is not limited to the first 10–20 y and to tropical eruptions as shown in previous studies (9–11, 23), but can also occur in response to high-latitude eruptions, lasting for 50 y or more.

The changes in ocean circulation are also accompanied by a decrease in the OHC. The eruption immediately cools the surface (SI Appendix, Figs. S2 and S8A), after which the anomalously cold surface water is transferred into the thermocline layer and deeper in the ocean. Cold anomalies below ∼300 m are established by year 15, and they persist throughout the remainder of the simulation. In this regard, the evolution of the global OHC associated with a high-latitude eruption is similar to...
that for tropical eruptions such as Tambora, Agung, and Pinatubo (9, 10).

Discussion and Conclusions

In summary, our results illuminate the mechanism by which large summer high-latitude eruptions in the Northern Hemisphere may trigger an El Niño-like anomaly—relative to the no-volcano case—in the first 4–9 mo after the eruption and affect both AMOC and ENSO variability for decades thereafter. Such eruptions generate a hemispheric-scale surface cooling and thus trigger, via energetic constraints (19, 20), a general southward shift in the ITCZ that is particularly marked in the Pacific basin. In turn, the southward-shifted ITCZ in the Pacific generates anomalous surface westerlies over the equatorial western and central Pacific and anomalous equatorial northerlies in the eastern Pacific in the first 4–9 mo following the eruptions (Fig. 1B); these anomalies constitute an optimal trigger for an El Niño-like perturbation (24). The processes leading to El Niño-like anomalies in response to high-latitude eruptions are thus very different from those hypothesized to act in response to tropical eruptions (25, 26) and rely on better-understood mechanisms (19, 20). Only a few modeling studies (27–30) have investigated the climate impacts of high-latitude volcanic eruptions, and none has looked at a potential influence on ENSO. Oman et al. (29), using an atmospheric model coupled to a mixed-layer ocean, found a weakening of the summer monsoon circulation and precipitation over Africa and Asia in the summer of the eruption, consistent with our findings. In our model, Northern Hemispheric cooling also gives rise to a southward shift in the Pacific ITCZ and subsequently to an El Niño-like anomaly via a dynamical (Bjerknes) feedback, which is precluded in a mixed-layer ocean model. Our results also suggest that a large high-latitude eruption has global-scale, long-lasting effects owing to changes in the OHC and the AMOC, which in turn affect ENSO variability. Several modeling and observation-based studies have found a causal link between the AMOC strength and tropical Pacific climate (31–36) through large-scale atmospheric circulation teleconnections associated with SST gradient changes in the tropical Atlantic (SI Appendix, Fig. S12). In addition to this atmospheric bridge, a readjustment of the global ocean circulation by oceanic waves also transmits thermocline signals from the North Atlantic to the tropical Pacific (37–39). However, the timescales associated with these teleconnections are very different: the atmospheric influence can be transmitted from the tropical Atlantic into the tropical Pacific in few weeks, whereas the oceanic teleconnections have a timescale of a few decades (36–38).

Studies do not agree on whether ENSO variance is positively or negatively correlated to the AMOC strength. For example, Dong and Sutton (31) and Timmerman et al. (36) examined the response of five climate models to the imposition of freshwater forcing (“hosing”) of the North Atlantic Ocean and found a significant increase in ENSO variability when the AMOC was substantially weakened. On the other hand, Timmerman et al. (39) and Atwood (35) show that, in two other models, ENSO variance decreases in response to a hosing of the North Atlantic. The positive correlation between AMOC and ENSO variance is also supported by proxy reconstructions of the impact of the 8.2-ky BP freshwater discharge into the North Atlantic, which shows that the variance of ENSO was reduced for several decades after the freshwater pulse (35). Physically, a stronger AMOC may cause an increase in ENSO variability by shoaling and flattening the Pacific thermocline along the equator (SI Appendix, Fig. S13), which enhances the strength of the Bjerknes feedback (SI Appendix, Fig. S14) (40).

The lack of robustness of modeled ENSO responses to changes in AMOC is likely the result of the inability to correctly simulate the climatology of the tropical Pacific atmosphere–ocean system, compromising the physics and feedbacks governing the modeled ENSO (41). Analyses of the model ensembles used in the past decade or so show that in most of them—including in all models (or very similar versions) examined by Timmermann et al. (36)—the spatiotemporal structure of ENSO and the key feedbacks have large biases compared with those observed (42). In contrast, the ENSO simulated by the climate model used here compares favorably to observations [figure 13 in the study by Bellenger et al. (42)] both in terms of mean state (amplitude, spatial structure, frequency spectrum, and the seasonality) and the strength of the feedbacks acting throughout a typical ENSO cycle (the Bjerknes feedback, the heat flux, shortwave and latent heat feedbacks). Our model’s more realistic portrayal of key features of ENSO—compared with most climate models—may be related to the fact that the double ITCZ bias over the tropical Pacific—ubiquitous in climate models—is less pronounced in NorESM1-M (16, 17): the simulated ITCZ is more confined to the Northern Hemisphere in NorESM1-M, as observed, rather than being symmetric around the equator as in most of the models. Our results highlight the potential for large high-latitude eruptions to affect global climate through long-lasting changes in ocean circulation and heat content beyond the lifetime of the injected stratospheric aerosols. Our study also provides new insights for a better understanding of volcanic impacts on ENSO variability, which is of importance also in view of the potential role played by the tropical Pacific in the global warming hiatus (43–47). More generally, our results suggest that multidecadal changes in the AMOC—owing to either natural internal variability or forcing (such as volcanic eruptions)—may modulate the statistics of ENSO for several decades into the future. Further modeling studies, possibly at a community level (48) such as those planned in the Volcano Model Intercomparison Project (49), will be necessary to better assess the robustness and the mechanisms behind the AMOC–ENSO relationship, given the very different AMOC sensitivity to external forcing shown by climate models (14). The potential impact of AMOC modifications on tropical Pacific climate introduces additional challenges in attributing future changes in ENSO variability to changes in human activity.

Materials and Methods

Model Description and Experiment Design. We use the coupled atmospheric–ocean–aerosol model NorESM1-M (16, 17) with horizontal resolution 1.9° latitude × 2.5° longitude. We used 26 vertical levels, 26 vertical levels for the direct effect of aerosol, and the first and second indirect effects of aerosols on warm clouds. NorESM1 is an Earth System Model that uses a modified version of CAM4, CAM4–Oslo, for the atmospheric part of the model, with an updated module that simulates the life cycle of sea salt, mineral dust, particulate sulfate, black carbon, and primary and secondary organics. CAM4–Oslo is coupled to an updated version of the isopycnal ocean model MicOM. A more detailed description is provided in SI Appendix.

The multistage high-latitude eruption is simulated by injecting, mostly in the upper-troposphere/lower stratosphere, 100 Tg of SO2 and dust over a 4-mo period. The eruption is comprised of eight injections, each lasting for 4 d (SI Appendix, Table S1). The simulated volcanic eruption starts from a specific year selected from a transient 156-yr historical (1850–2005) simulation. We generate the individual ensemble members by perturbing the initial conditions of the specific year in which the eruption is simulated; perturbations are constructed by replacing the state of the atmosphere on June 1st with that from days immediately preceding or following the eruption. Twenty integrations are performed, each 4 y long. Ten of these integrations are extended to 60 y; together, they constitute the volcanic ensemble, ENV. An equivalent ensemble is generated from a control run that has volcanic aerosols set to background conditions (ENS,); historical aerosol emissions are taken from Intergovernmental Panel on Climate Change AR5 datasets (50). The eruption year selected is the model year 1934 (eruption year: number 01), which is roughly in middle of the climatology period, and it presents El Niño conditions as it was before the Laki eruption (SI Appendix). A detailed examination of NorESM performance in interactively

Pausata et al.
simulating the Laki eruption and a comparison with other modeling studies is available in the study by Pausata et al. (18).

We analyze monthly mean model output. We assess the statistical significance of differences in mean state and variability (at a stipulated 95% significance level) using t and F tests.

Analyses.

ENSO. The ENSO index used in this study consists of monthly mean SST anomalies spatially averaged over the Niño3.4 region (5° N to 5° S and 170°W to 120°W). A 5-mo running mean is applied to damp uncoupled intra-seasonal variations in SST. E Niño events are defined as the periods during which the 5-mo running mean of the SST index anomaly is greater than seasonal variations in SST. El Niño events are defined as the periods during which the 5-mo running mean of the SST index anomaly is greater than +0.4°C for at least 6 consecutive mo. Changes in the ENSO variability are measured as changes in the SST SD in the Niño3.4 area. The SD is calculated from the concatenated time series using all 10 members in each ensemble.

The concatenation does not change the variance in ENS, and ENS, and only slightly affects the threshold for statistical significance.

AMOC. The AMOC index is defined as the zonally averaged overturning stream function in the North Atlantic between 30°N and 60°N and between 500- and 2,000-m depth. NorESM simulates a vigorous AMOC compared with other models, being in the upper range of AMOC strengths simulated by CMIP3 models (17). Measured by the maximum in the overturning stream function in North Atlantic, the AMOC in the NorESM is about 30 Sv at 26.5°N, whereas the observed AMOC is about 18–20 Sv (1).

ACKNOWLEDGMENTS. We thank A. Hannachi, A. Grini, M. Gaetani, and U. Timm for discussions and suggestions, and J. Carton, A. Robock, and two anonymous reviewers for insightful comments on the manuscript. The simulations were performed on resources provided by the Swedish National Infrastructure for Computing at the National Supercomputer Centre.
Impacts of high-latitude volcanic eruptions on ENSO and AMOC

SI Appendix

Francesco S.R. Pausataa,1, Leon Chafika,b,c, Rodrigo Caballeroa and David S. Battistid,e

aDepartment of Meteorology, Stockholm University and Bolin Centre for Climate Research, 10691, Stockholm, Sweden
bNOAA/NESDIS Center for Satellite Application and Research, College Park, MD, 20740
cCooperative Institute for Climate and Satellites, University of Maryland, College Park, MD, 20740
dDepartment of Atmospheric Sciences, University of Washington, Seattle, WA, 98195
eUNI Research, 5008 Bergen, Norway

1To whom correspondence should be addressed. Email: francesco.pausata@misu.su.se

High-latitude eruption simulated by NorESM1-M

The objective of our study is to examine the response of the ocean to a hypothetical large high-latitude volcanic eruption on short- (0-3 years) and long-time scales (up to 60 years from the eruption). We use as a starting point for our study a transient simulation (1850-2005) performed with the Norwegian Earth System Model (NorESM1-M(1, 2)) with online calculation of aerosols and their direct effect and the first and second indirect effects on warm clouds.

The Model

NorESM1-M is an Earth System Model that uses a modified version of the Community Atmospheric Model version 4 (CAM4 (3)), CAM4–Oslo, for the atmospheric part of the model. CAM4–Oslo includes an updated aerosol module that simulates the life cycle of sea salt, mineral dust, particulate sulfate, black and organic carbon (4). CAM4–Oslo has a separate representation of aerosol–radiation and aerosol–cloud interactions. The model uses the finite volume dynamical core for transport calculations, with horizontal resolution 1.9° (latitude) × 2.5° (longitude) and 26 vertical levels, as in the original CAM4. CAM4–Oslo is coupled with the updated version of the Miami Isopycnic Coordinate Ocean Model – MICOM(5). The sea ice and land models are basically the same as in the Community Climate System Model version 4 – CCSM4 (6).

The model can adequately represent the modern climate variability (2): the northern and southern annular modes, the Madden-Julian Oscillation and the El Niño Southern Oscillation are well-captured in the model. Bellenger et al.28 have shown that NorESM1-M has one of the best simulations of ENSO of all the climate models evaluated in the Coupled Model Intercomparison Project 5 (CMIP5). The metrics used in the evaluation of the model ENSO cycle include the amplitude, spatial structure, frequency spectrum and the seasonality of ENSO, and the strengths of the feedbacks (such as the Bjerknes, heat flux, shortwave feedbacks) responsible for the ENSO
variability. NorESM simulates a vigorous Atlantic Meridional Overturning Circulation (AMOC) compared to other models, being in the upper range of AMOC strengths simulated by CMIP3 models (2, 7). Measured by the maximum in the overturning streamfunction in N. Atlantic, the AMOC in the NorESM is about 30 Sv at 26.5°N, whereas the observed AMOC is about 18-20 Sv (1).

A detailed analysis of NorESM performances is provided in Iversen et al. (2) and for the volcano simulations in Pausata et al. (8).

Experiment design and prescription of forcing

We simulate a hypothetical multi-stage high-latitude volcanic episode by injecting 100 Tg of SO$_2$ and dust – as an analog for ash – over 8 eruptions, starting on June 1$^\text{st}$. Each sub-eruption lasts 4 days, for an overall duration of 4 months (Table S1). The SO$_2$ injection heights follow the percentage distribution reported in the work of Thordarson and Self (9) for the Laki eruption, the second largest high-latitude volcanic eruption in historical time, occurred in 1783. However, the aim of the paper is not to validate the simulation against the Laki reconstruction, which has been done in Pausata et al. (8), but rather to investigate the short and long term impact of a hypothetical high-latitude eruption.

Table S1: Total amount of SO$_2$(Tg) emitted for each of the 4-day long eruption, and its vertical distribution. Maximum emission pressure height $p = 100$ hPa (~15 km).

<table>
<thead>
<tr>
<th>Eruption date</th>
<th>Jun 1$^\text{st}$</th>
<th>Jun 15$^\text{th}$</th>
<th>Jul 1$^\text{st}$</th>
<th>Jul 15$^\text{th}$</th>
<th>Aug 1$^\text{st}$</th>
<th>Aug 15$^\text{th}$</th>
<th>Sep 1$^\text{st}$</th>
<th>Sep 15$^\text{th}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total SO$_2$(Tg)</td>
<td>42</td>
<td>11</td>
<td>11</td>
<td>15</td>
<td>9</td>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>100 < p < 150 hPa</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>150 < p < 300 hPa</td>
<td>29</td>
<td>8</td>
<td>8</td>
<td>10</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>p > 300 hPa</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

We have analyzed two sets of ensemble members:

1) ENS$_v$-A: The volcanic eruption starts from a specific year selected from a transient 156-year climatology (1850-2005). We generate the ensemble members by perturbing the initial condition of that specific year in which the eruption is simulated. Twenty simulations are performed, each for 4 years. Ten of these simulations are extended to 60 years so that we can evaluate the long-term impact of the eruption episode on the AMOC.

2) ENS$_{v^-}$-A: We generate an equivalent cluster of ensemble members with the concentration of volcanic aerosols set to background conditions (historical emissions taken from IPCC AR5 datasets, see Kirkevåg et al. (4)) by perturbing the initial condition used to create the ENS$_v$. As
in the ENS, ensemble, 20 4-year simulations are performed, ten of which are extended to 60 years.

The year 1934 of the control simulation was selected as the eruption year for ENS\(_v\): (eruption year: number 01), which is roughly in the middle of the climatology period and features a strong El Niño event, as was the case in 1782/83 before the Laki eruption (10). The only difference between the two clusters is the volcanic forcing. This set-up allows avoiding misinterpretations of ocean heat content changes due to the fact that the model has not reach a full equilibrium (11).

Figure S1: Ensemble average change (ENS\(_v\) minus ENS\(_v\)\(_n\)) in aerosol optical depth (AOD) at 550 nm calculated for the months of the eruption (June to September). The numbers in the box in the right bottom corner show the global and tropical (between 23°S and 23°N) averaged changes in AOD.

Short-term impacts on ENSO

Our results show that the high-latitude volcanic eruption generates an aerosol plume that is confined to the Northern Hemisphere above 20-30°N in the months following the eruption, with no direct radiative forcing of the tropical zone (Fig. S1). Nevertheless, a significant strengthening of the El Niño phase takes place, peaking six months after the start of the eruption (i.e. in December), and is followed by a more negative La Niña phase on the second and third year (Fig. 1). The El Niño-like anomaly in the first 9 months from the start of the eruption is caused by the cooling of the Northern Hemisphere, and in particular the cooling of the extra-tropics in the Northern Hemisphere (Fig. S2).

The hemispherically asymmetric cooling leads to a southward shift of the Inter-Tropical Convergence Zone (ITCZ) (Figs. S2 and S3) due to robust and well understood physics (see, e.g.,
The amplitude of the ITCZ shift may be sensitive to the details of the model convection scheme (12), however the response is expected to be qualitatively similar across models.

A southward shift of the zonally averaged ITCZ commences quickly after the start of the eruption (0-3 months) over the Asian continent (where the cooling is strongest and peaks in the summer of the eruption) and the tropical Atlantic, bringing the ITCZ closer to the equator in all three basins by 4-6 months after the start of the eruption (Fig. S3). Since surface easterly winds are weakest under the ITCZ, the equatorward shift over the tropical Pacific implies a weakening of the easterly trade winds along the equator (i.e. a westerly anomaly – Fig. S4). This weakening of the trade winds over the equatorial Pacific leads to a reduction in the east-west temperature contrast across the tropical Pacific and thus begets an El Niño-like anomaly via the Bjerknes feedback (15).

![Figure S2: Ensemble average change (ENS, minus ENSnv) in surface temperature (left) and precipitation (right) caused by the eruption. Changes are calculated for (a-b) 1-3 months (JJA), (c-d) 4-6 months (SON), and (e-f) 7-9 months (DJF) following the start of the eruption. The color shading displays regions where anomalies are significant at the 95% confidence level. The contour intervals (dashed = negative anomalies; solid = positive anomalies) follow the color scale. The bold line in the left panels indicates the 0°C anomaly.](image-url)
Figure S3: Ensemble average change (ENS, minus ENS_{nv}) in zonal averaged precipitation (in %) over different geographical regions for 1-3 (a), 4-6 (b) and 7-9 (c) months following the start of the eruption. The regions are: Asia 60°E – 150°E; Europe-Atlantic Ocean 90°W – 50°E; and the Pacific Ocean 150°E – 90°W). The horizontal lines show the average position of the ITCZ in each respective area in the no-volcano ensemble, ENS_{nv}. Shading shows the approximate 95% confidence intervals (twice the standard error of the mean) of the difference between the pairs of experiments that comprise the ensembles.

Figure S4: As in Figure S1, but for the change in wind velocity (vectors) and zonal wind speed (shading) at 1000 hPa between ENS, and ENS_{nv}, for (a) 1-3, (b) 4-6, and (c) 7-9 months following the start of the eruption.
To investigate whether the El Niño-like response depends on the pre-existing ocean state, we performed an additional experiment, in which each pair of experiments (volcano and no-volcano) start from identical initial conditions in the ocean and atmosphere, but the initial conditions for each pair of experiments are taken five years apart from a control (no volcano simulation) experiment (e.g., 1860, 1865, ..., 1960). Hence, each pair of experiments starts from a unique phase of ENSO. Each experiment is integrated for four years. The difference between each pair of experiments thus illuminates the impact of the volcano that erupted during a unique phase of ENSO. The difference between the ensemble average of the volcano experiments (ENS_v-B) and the corresponding ensemble average of the no-volcano experiments (ENS_nv-B) measures the average impact of the volcano starting from different ENSO states. An El Niño-like anomaly develops in response to this eruption in a very similar fashion as the El Nino-like anomaly that was generated in response to the eruption that started during an El Nino event – i.e., in the ENS_v (Fig. S5). However, the magnitude of the anomaly is larger in the ENS-B than in the ensemble of experiments, all starting from El Niño conditions (ENS). A detailed examination of the ENS-B members reveals that the El Niño-like response to the eruption seems to be stronger starting from La Niña and neutral conditions (12 cases in ENS-B) compared to staring from El Niño years (8 cases in ENS-B). This explains why the response in the ENS-B is larger compared to ENS. However, the number of El Niño/La Niña
events is small to be conclusive and further investigation is required to confirm these results. We also performed an ensemble (n members=10) of integrations in which the strength of the imposed multi-event eruption was reduced by 1/3 to about 33 Tg of SO$_2$, (ENS$_{-}$W), which results in a weaker cooling over the Northern Hemisphere. The El Niño-like anomaly in response to the eruption is weaker than the anomaly generated by the larger eruption (because the cooling of the NH is reduced), but it is still significant and clearly visible (Fig. S5). Therefore, the El Niño-like anomaly in the first months following the start of the eruption strongly depends on the amplitude of the eruption (Fig. S5).

Figure S6: Nino3.4 Index for the period Jan 1912 – Dec 1916, calculated using SST anomalies (°C) normalized to 1971-2000 from Hadley Centre SST data set (HadISST1). A 5-month running mean has been applied to remove uncoupled intraseasonal variations in SST.

Our model results are difficult to compare to past strong high-latitude eruptions given their scarce number during the last hundred and fifty years when reanalysis of the sea surface temperature (SST) are available. Furthermore, it is difficult to verify whether a given eruption has or not triggered an El Niño response since it is not possible to know how the climate system would have behaved without such eruption. Nevertheless, when analyzing the Nino3.4 index behavior in the months preceding and following the largest high-latitude eruption of the 20th century (Katmai in 1912), it is intriguing that El Niño event that peaked in January of 1912, six months prior to the Katmai eruption was immediately followed by near normal conditions in the tropical Pacific (Fig. S6) rather than the La Niña conditions that normally occur after El Niño events. The near normal conditions were then followed by an El Niño event starting a year after the eruption. Therefore, the ENSO behavior following the Katmai eruption is consistent with our findings. Furthermore, the El Niño
conditions preceding the Laki eruption were further strengthened in the winter of 1783-84 (6 to 9 months after the beginning of the eruption) as shown by tree-ring data (10, 16) in agreement with our findings.

Figure S7: Surface temperature anomalies for the summer (JJA) and the winter (DJF) following the Katmai eruption (June 1912) in 15 CMIP5 models.

Finally, we performed a multimodel composite response to Katmai in the historical (20th Century) simulations in the CMIP5 archive. In forming our composite, we included results from all the CMIP5 models that feature realistic ENSOs in their control simulations: specifically, we used the 15 models that best simulate ENSO with spatial and temporal characteristics consistent with observational constraints according to the criteria used in Bellenger et al. (17). We find that the multimodel-mean Northern Hemisphere cooling for the seasons following the eruption is much smaller than in the simulated Laki-type eruption presented in this study, though similar in spatial structure (cf. Fig. S7 and S2). Hence, one would expect an El Niño-like anomaly 4-9 months after
the eruption, though weaker than in our study. The surface temperature composites over the historical CMIP5 simulations show that for the seasons immediately following the Katmai eruption, significant warm anomalies are in fact present in the equatorial Pacific in the Nino4 and partially Nino3.4 regions (Fig. S7).

We must note, however, that the CMIP5 historical simulations are not ideal for investigating the impact of large high-latitude volcanic eruptions. To unambiguously assess the impact of the volcanic eruption on ENSO two types of simulations are necessary: a control experiment without the eruption and an experiment with an eruption imposed — both starting from the same initial conditions at the onset of the eruption. The latter experiments are included in the historical simulations using the CMIP5 models, but unfortunately the accompanying control experiments were not performed as part of CMIP5. Furthermore, the CMIP5 historical simulations only include one large high-latitude volcanic eruption (Katmai); with such a small sample it is difficult to isolate the volcanic impact without the complementary control (no volcano) experiments, even using alternative statistical approaches (e.g., (18)).

Figure S8: Ensemble average change (ENS$_v$ minus ENS$_{nv}$) in NH averaged surface air temperature (a) and precipitation (b), between ENS$_v$ and ENS$_{nv}$. Shading shows the confidence intervals (twice the standard error of the mean) of the change seen in all twenty pairs of experiments.

Long-term impacts on ocean circulation and ENSO

AMOC response

The Atlantic Meridional Overturning Circulation (AMOC) index is the maximum in the zonally averaged overturning stream function in the North Atlantic between 30°N and 60°N and between 500 and 2000 m depth.
The Atlantic Meridional Overturning Circulation (AMOC) shows a brief (less than 6 months) weakening after the volcanic eruption, followed by a progressive AMOC strengthening that takes place and peaks between 5 and 10 years after the eruption (Fig. 3a). The maximum AMOC anomaly is about 1.5 Sverdrup (Sv; 1 Sv = 10⁶ m³/s). Thereafter, the AMOC starts to slow down and reaches a minimum anomaly of a ~ −1 Sv about 35-40 years after the eruption. The AMOC remains significantly weaker than the control ENSvn from 25 years after the eruption until the end of the analyzed period, with a slow recovery over the last decade of the simulations. The negative radiative forcing from volcanic aerosols results in a cold surface temperature anomaly that develops during the first ~ 3 years (Fig. S5). These cold SST anomalies are gradually transferred into the deep ocean by mixing and convection (Fig. 3b). The general cooling on the NH is accompanied by reduced precipitation (Figs. S3 and S8b) and consequently reduced river runoff at high latitudes of the Northern Hemisphere. Therefore, more saline and hence denser upper ocean conditions develop at higher latitudes of the Northern Hemisphere (Fig. S9). In the Atlantic, both colder ocean temperatures and enhanced salinity destabilize the water column, leading to enhanced oceanic convection (Fig. S10), and a spin-up of the AMOC. The strengthening of the AMOC is followed by a progressive weakening of the AMOC, which reaches a minimum about 35-40 years after the eruption after which it stays below normal until the end of the analyzed period (60 years).

Figure S9: Ensemble average change (ENS, minus ENSvn) in temperature (a) and salinity (b) as a function of time in the North Atlantic (averaged over 25° to 57° W, and 42°to 57°N). The stippled areas denoted grid-boxes in which the difference is not significant at 95% confidence level using a t test.
Figure S10: Ensemble average change (ENS_v minus ENS_{nv}) in mix layer depth over the North Atlantic for the first 4 years following the eruption. Negative numbers indicate a deeper mixed layer. Changes in mixed-layer depth are good proxy for convection strength over the North Atlantic. The stippled areas denoted grid-boxes in which the difference is not significant at 95% confidence level using a t test.

ENSO response

The ENSO variance is affected by changes in the strength of the AMOC: during years 5-25 after the volcanic eruption when the AMOC is increased in amplitude, the ENSO variance is increased (by ~7%) relative to that in the no-volcano ensemble (Table S2); during years 26-45 when the AMOC is weaker than normal, the variance in ENSO is reduced by ~16%.

To investigate whether the ENSO frequency is also influenced by AMOC variability, we adopt two different approaches to determine the length of the ENSO cycle in NorESM: the characteristic ENSO period and the average El Niño return time.

To estimate the characteristic ENSO period, we first concatenated the Nino3.4 index from all 10 experiments for each time period (210, 200 and 150 years) in each ensemble ensuring continuity in the Nino3.4 anomalies. Using these time series, we estimate a characteristic period by doubling the time lag for which the autocorrelation of the Nino3.4 index is at the extreme negative value. The minimum in the autocorrelation for the Nino3.4 index represents the lag time between El Niño and the following La Niña state (or vice versa) and hence, represents half ENSO cycle. Therefore, to determine the ENSO cycle we double the minimum lag time in the autocorrelation.

To estimate the average El Niño return time we first find the start date of all the El Niño events that happen in each epoch (1-25 years, 26-60 years) and in each simulation in the ensemble; an El Niño event is deemed to occur when the Nino3.4 anomalies exceed +0.4 °C for at least 6 consecutive months. For each epoch, we then calculate the return time between all El Niño events in each of the 10 simulations that comprise the ensemble, and average these return times. The
AMOC is stronger (weaker) in the volcano simulations than in the no-volcano simulations in the first 25 years (years 25-60) after the volcanic eruption.

To assess the significance of the difference in characteristic ENSO period and the average El Niño return time between the volcano and no-volcano ensemble we use the bootstrap technique in which we randomly subsample 100 periods of 25 uninterrupted years for both ensembles. To verify whether the changes in the mean characteristic ENSO period and the average El Niño return time are statistically significant at 95% confidence level we apply the t test to the subsample generated through the bootstrap technique.

For years 5-25 after the eruption, the autocorrelation analysis indicates there is a slight increase in the ENSO period due to the volcanic impact on the AMOC (Table S3), whereas a six-month decrease in the ENSO period is found 26-45 years after the eruption associated with the volcano-induced reduction in AMOC.

Table S2: Standard deviation (°C) of the Nino3.4 index for the volcano (ENS_v) and no-volcano (ENS_nv) ensemble members for different time periods after the eruption (year 1). ENS_v standard deviations greater (less) than ENS_nv are shown in red (blue) and in bold when significant at 95% confidence level using the F test.

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>NINO3.4 index STANDARD DEVIATION (°C)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ENS_nv</td>
<td>ENS_v</td>
</tr>
<tr>
<td>5 to 60 years</td>
<td>0.85</td>
<td>0.82</td>
</tr>
<tr>
<td>5 to 25 years</td>
<td>0.81</td>
<td>0.87</td>
</tr>
<tr>
<td>26 to 45 years</td>
<td>0.89</td>
<td>0.75</td>
</tr>
<tr>
<td>46 to 60 years</td>
<td>0.85</td>
<td>0.82</td>
</tr>
</tbody>
</table>

Table S3: Characteristic ENSO period and return time for El Niño events found in the volcano and no-volcano ensemble.

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>NINO3.4 FREQUENCY</th>
<th>Autocorrelation</th>
<th>Average return time</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>ENS_nv</td>
<td>ENS_v</td>
</tr>
<tr>
<td>1 to 25 years</td>
<td></td>
<td>3 yrs 2 mnts</td>
<td>3 yrs 4 mnts</td>
</tr>
<tr>
<td>26 to 60 years</td>
<td></td>
<td>3 yrs 6 mnts</td>
<td>3 yrs 0 mnts</td>
</tr>
<tr>
<td>1 to 60 years</td>
<td></td>
<td>3 yrs 4 mnts</td>
<td>3 yrs 2 mnts</td>
</tr>
</tbody>
</table>

Although the ensemble average return time does not change significantly due to the volcanic eruption (Table S3), an examination of the distribution of return times for each epoch and each ensemble reveals an 11% decrease in the short-cycle (<25th percentile) and 5% decrease in the long-cycle periods (>75th percentile – Table S4) in the first 25 years after the eruption. The last 35 years
of the simulation (years 26-60) suggest instead more frequent (14%) very short or very long cycles (12% – Table S4) owing to the volcanic eruption.

Table S4: Percentiles of Nino3.4 event average return time calculated for the concatenated Nino3.4 time series for the ENS_n and its changes (%) for each epoch in the ENS_v.

<table>
<thead>
<tr>
<th>PERIOD</th>
<th>25<sup>th</sup></th>
<th>50<sup>th</sup></th>
<th>75<sup>th</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>yrs</td>
<td>mnts</td>
<td>yrs</td>
</tr>
<tr>
<td>1 to 25 yrs</td>
<td>ENS<sub>n</sub></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>ENS<sub>v</sub></td>
<td>+11%</td>
<td>–</td>
</tr>
<tr>
<td>26 to 60 yrs</td>
<td>ENS<sub>n</sub></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ENS<sub>v</sub></td>
<td>-14%</td>
<td>–</td>
</tr>
<tr>
<td>1 to 60 yrs</td>
<td>ENS<sub>n</sub></td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>ENS<sub>v</sub></td>
<td>-7%</td>
<td>-5%</td>
</tr>
</tbody>
</table>

Relation between AMOC strength and ENSO variability

Several studies have highlighted the influence of the AMOC on ENSO variability owing to both atmospheric teleconnections (19–24) and oceanic waves that transmit thermocline signals from the North Atlantic to the tropical Pacific (25–27). However, the time scales associated with these teleconnections are very different: the atmospheric influence can be transmitted from the tropical Atlantic into the tropical Pacific in few weeks, whereas the oceanic teleconnections have a time scale of a few decades (23–25).

In order to test whether the simulated changes in the amplitude and frequency of ENSO are indeed related to the strength of the AMOC in our model, we isolate epochs in the no-volcano ensemble in which the AMOC index is unusually strong and unusually weak, as defined when the AMOC index is above the 85th and below the 15th percentile, respectively, for at least 48 consecutive months. We have chosen the 85th and 15th percentiles in order to get a mean AMOC change that is comparable to the change between the stronger (5 to 25 years) and weaker (26 to 45 years) AMOC periods associated with the volcanic eruption (see Fig. 3a): The mean difference between the strong and the weak AMOC in the no-volcano ensemble is ~2.55 Sv, whereas the changes in the AMOC difference between the volcano and no-volcano ensemble in the two periods is ~2.45 Sv.

First, we calculate the change in the standard deviation of the tropical Pacific SST anomalies for the strong and the weak AMOC epochs in the no-volcano ensemble and between years 5 to 25 years and years 26 to 45 due to the volcanic eruption. Strong AMOC phases are clearly associated
with increased variability in the Tropical Pacific (Fig. S11a). The shape and the magnitude of the changes are remarkably similar to those induced by the volcanic eruption (Fig. S11b).

Figure S11: a) Composite of the SST standard deviation changes (in °C) between strong and weak AMOC periods in the ENS\textsubscript{nv} simulations. The strong and weak AMOC periods are defined as periods in which the AMOC maximum anomalies are outside the 15th-85th percentiles for at least 48 consecutive months. b) Difference in SST standard deviation changes between the period 5-25 years and 26-45 years after the eruption (i.e. the difference between panel a (strong AMOC anomalies) and b (weak AMOC anomalies) in Figure 3). The color shading displays changes that are significant at the 95% confidence level using the F test. The contour interval is 0.05°C (dashed = negative anomalies; solid = positive anomalies; the zero line is omitted). The box delimitates the Niño3.4 area.

To investigate whether the mechanisms affecting the ENSO variance between the years 5-25 and between years 26-45 after the eruption are similar to those associated with the unforced multidecadal AMOC variability, we analyze the climatological mean state changes in the tropical Pacific in the two set-ups (Fig. S12). The changes in the climatological SST associated with the change from low to high AMOC in the unforced simulation are similar to those associated with the changes in AMOC due to the volcano; in particular, the cooling over the maritime continent and the warming south of the equator in the central/southeast Pacific, thereby decreasing slightly the east-
west temperature gradient over the tropical Pacific (Fig. S12 cf. panels a and b). Periods of stronger AMOC also show a southward displacement of the ITCZ in the Pacific and a decrease in rainfall in the western tropical Pacific; elsewhere, changes in the tropical Atlantic associated with high and low AMOC periods are qualitatively different in the unforced experiment compared to the volcanically forced changes. The surface wind changes show a strengthening of the westerlies in Northern Hemisphere high-latitudes, a weakening in the Southern Hemisphere high-latitudes and a strengthening over the Equatorial Pacific in both set-ups.

Figure S12: Composite of the change in climatological SST (a), precipitation (c) and 1000 hPa zonal wind (e) between strong and weak AMOC periods in the ENS simulations. The strong and weak AMOC periods are defined as periods in which the AMOC maximum anomalies are outside the 85th-15th percentiles for at least 48 consecutive months. Panels (b), (d) and (f) are as in panels (a), (c) and (e), respectively, only for the climatological change between years 5 to 25 and years 26 to 45 after the eruption. The contours show the areas significant at 95% confidence level using the t test.
We note that a back-of-the-envelope calculation shows that the asymmetry in the hemispheric average temperature is sufficiently small that the physics outlined in Kang et al. (12) is unlikely to be apropos to the multidecadal changes in the tropical Pacific atmosphere and ocean that are associated with the changes in AMOC strength, forced or unforced. Strong AMOC periods increase the asymmetry in the hemisphere-averaged temperature in the Northern Hemisphere compared to the Southern Hemisphere by only ~0.06°C. Using a typical regression value that relates a change in surface temperature to a change in surface heat flux (~15 W/m²/°C), this implies a change in the cross equatorial ocean heat flux of about 0.015PW. Assuming this heat flux is balanced by an equal but opposite a cross equatorial atmosphere, the results of Donohoe et al. (28) imply the AMOC would cause a latitudinal change in the zonal average ITCZ of barely 5km.

Stronger AMOC phases in both the unforced simulations and during years 5-25 of the volcanic simulations feature – albeit with a different pattern – a more stratified thermocline than in the weak AMOC phases of the unforced and forced simulations (Fig. S13) and a more responsive zonal wind (Fig. S14). Stronger AMOC results in a shoaling and a stratification of the Pacific thermocline (Fig. S13). As shown by Russell and Gnanadesikan (29), a stronger ocean stratification in the tropical Pacific and more responsive zonal winds are coupled with enhanced ENSO variability.

The increase in ENSO variance when the AMOC strengthens may then be attributable to a stronger Bjerknes feedback that results from changes in the structure of the climatological thermocline in the Pacific. The latter could be accomplished by either the adjustment of global scale oceanic waves or by changes in the climatological wind stress curl over the Pacific that stem from the large-scale atmospheric adjustment to AMOC induced changes in the tropical Atlantic. Our results indeed show increased ocean stratification in the equatorial Pacific and a stronger Bjerknes feedback (Fig. S14) associated with stronger AMOC (Fig. S13). The changes in the zonal mean thermocline depth over the equatorial Pacific (Fig. S13) are comparable in magnitude to previous modeling estimates. For example, in Timmermann et al. (25) the thermocline depth in the Pacific undergoes variations of about 4 meters (~4 m) associated to AMOC changes of ~15 Sv. Dong and Sutton (17) show a change of the thermocline depth in the equatorial Pacific of up to 10 m and temperature anomaly at 150 m depth of up to 0.75-1°C following a AMOC weakening of 20 Sv.

To conclude, overall these results indicate that volcanically induced changes in the AMOC can give rise to multidecadal variations in ENSO activity. Further studies are necessary to investigate in detail the interplay among the changes in the Pacific mean state presented here and how they can lead to the simulated changes in ENSO variability.
Figure S13: a) Climatological thermocline depth (as defined using the 20°C isotherm Z_{20}), b) the anomalies between stronger and weaker AMOC periods and c) between the changes in the 5 to 25 year and 26 to 45 year periods, averaged over the tropical Pacific (3°S – 3°N). Positive values mean shoaling and negative values a deepening of the thermocline. Shading shows the confidence intervals (twice the standard error of the mean). d) Climatological annual mean temperature (°C), the anomalies e) between stronger and weaker AMOC periods and f) between the changes in the 5 to 25 year and 26 to 45 year periods, averaged over the tropical Pacific (3°S – 3°N). The contours in panels e) and f) show significant difference at 95% confidence level using a t test.
Figure S14: a) Climatological standard deviation of the zonal wind stress (TAUX), averaged over the tropical Pacific (3°S – 3°N). b) Change in the standard deviation of zonal wind stress associated with strong vs. weak periods of AMOC in the unforced (no-volcano) simulation. c) Change in the standard deviation of zonal wind stress during the period 5 to 25 years after the eruption (with anomalously strong AMOC) minus the change in the period 26 to 45 year periods after the eruption (with anomalously weak AMOC). In panels a) and c) the shading shows the approximate 95% confidence intervals (twice the standard error of the mean). In panel b) the anomalies are significant in the entire domain at 95% confidence level using the F test, except in the region encircled.
References

