298 JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 53, No. 2

Nonlinear Amplification of Stationary Rossby Waves Near Resonance. Part 1.

P. MAaLGuzzI
CNR-FISBAT, Bologna, Italy

A. SPERANZA, A. SUTERA, AND R. CABALLERO
Universita’ di Camerino, Camerino, Italy

(Manuscript received 25 July 1994, in final form 13 July 1995)

ABSTRACT

The authors search the stationary solutions of the barotropic vorticity equation in spherical coordinates by
numerically solving the equations with the Newton—Keller pseudoarclength continuation method. The solutions
consist of planetary-scale Rossby waves superimposed on zonal wind profiles and forced by sinusoidal orography
in near-resonance conditions. By varying the zonal wind strength across resonance, it is shown that multiple
solutions with different wave amplitudes can be found: for small forcing and dissipation, the solution curve is
the well-known bended resonance. The comparison between numerical results and theoretical predictions by a
previously developed weakly nonlinear theory is successfully attempted.

The authors then extend the barotropic, weakly nonlinear theory to stationary Rossby waves forced by large-
scale orography and dissipated by Ekman friction at the surface, in the framework of the quasigeostrophic model
continuous in the vertical direction. The waves are superimposed on vertical profiles of zonal wind and strati-
fication parameters taken from observations of the wintertime Northern Hemisphere circulation. In near-resonant
conditions, the weakly nonlinear theory predicts multiple amplitude equilibration of the eddy field for a fixed
vertical profile of the zonal wind. The authors discuss the energetics of the stationary waves and show that the
form drag and Ekman dissipation can be made very small even if realistic values of the parameters are taken, at
variance with the barotropic case.

This model is proposed as the theoretical base for such phenomena as atmospheric blocking, bimodality, and

weather regimes.

1. Introduction

In the last decade we have investigated many differ-
ent aspects of low-frequency variability: (i) the esti-
mation of probability density for different parameters,
both in the real atmosphere (Hansen and Sutera 1986,
1987; Benzi and Speranza 1989) and in simulation
models (Hansen and Sutera 1990; Hansen et al. 1991);
(ii) the dynamical nature of flow patterns correspond-
ing to maxima in estimates of probability densities
(Hansen 1988); and (iii) the physical nature of insta-
bilities driving atmospheric circulation from one pat-
tern to the other and the construction of a hierarchy of
‘‘minimal models’’ reproducing the observed statistics
(Benzi et al. 1986a,b; Benzi et al. 1988). In this process
we had to analyze the nature of confinement in the me-
ridional plane of ultralong waves (Pandolfo and Sutera
1991; Benzi and Malguzzi 1992), which is at the basis
of the resonant amplification that plays a key role in
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our theory on nonlinear bending (Benzi et al. 1986a,
hereafter referred to as BMSS).

In this paper we will not readdress the questions
above. Our purpose is instead to move further toward
the identification of the physical mechanisms respon-
sible for some particular properties of observed ultra-
long planetary waves. In particular, we consider the
fact that observed patterns of ultralong waves can be
stabilized at amplitude values differing up to one hun-
dred meters of geopotential height while no correlated
change in the patterns of zonal wind is observed. This
property emerges from all the available statistics of
low-frequency variability (see references above), and
a further illustration is provided by the example pre-
sented in section 2.

The above property imposes severe constraints on
possible dynamical interpretations. Linear theories
based on the interference between traveling and sta-
tionary modes can, in line of principle, account for the
observed amplitude excursion but imply the existence
of a component of progressive phase, which is not ob-
served. The extension of linear wave theories to include
the nonlinearity arising from the interaction with zonal
flow via momentum drag (Charney and Devore 1979;
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Legras and Ghil 1985) does not solve the problem since
either of these theories predict major changes of the
zonal wind, also not observed. In earlier papers on the
subject we have shown that wave—wave interaction
can, in line of principle, account for the above obser-
vational properties. In particular, with the help of ex-
tremely simplified models of atmospheric general cir-
culation, we have shown that the meridional gradient
of the ‘‘meridional contribution to vorticity,”” 9,0,,¥,
is capable of producing a wave self-non-linearity able
to confine, through a mechanism of nonlinear reso-
nance bending, stationary solutions in which the am-
plitude of the perturbation field ranges several tens of
meters of geopotential height for fixed zonal wind. In
order to keep the mathematical treatment of such phys-
ical process as simple as possible (minimal), it turns
out convenient to ‘‘shape’’ the basic nonlinearity by
means of an appropriate latitudinal function g(y) and
work in terms of a single longitudinal harmonic mode
(in slight detuning from resonance). However, in the
previous papers we did not provide an explicit physical
justification for the use of such a projection, nor did we
try to move toward more realistic representations of
atmospheric planetary flows. In this work we address
both questions: we will find numerically the stationary
solutions of a quasigeostrophic barotropic model where
the latitudinal structure is not preassigned and several
modes in longitude are retained. We will show that the
expected phenomenology of resonance bending is in-
deed found (section 3); we will then extend the BMSS
analysis to models that are vertically continuous (sec-
tions 4-7), finding that it is possible to sustain topo-
graphically forced stationary waves of very different
amplitudes with minor differences in form drag.

2. The phenomenology of a winter case

To illustrate the typical physical phenomenon that
we want to model, let us consider National Meteoro-
logical Center Northern Hemisphere winter 500-mb
geopotential height data for the winter 1962/63. These
data have a 5° by 5° resolution covering the period start-
ing 1 December—28 February. For this winter the time
mean circulation is presented in Fig. 1. By visual in-
spection it can be seen that the large-scale circulation
bears a strong signature of the zonal wavenumber 3
with relevant ridges upstream from the Rocky Moun-
tains, the eastern Atlantic, and the Siberian region. To
follow the time evolution of this pattern, we have con-
sidered first a latitude average of the geopotential
height between 45° and 75°N. Then, we have computed
the projection of the resulting one-dimensional field
onto zonal wavenumber 3, obtaining the amplitude and
phase of this Fourier component. In Figs. 2a and 2b we
present the time behavior of these quantities while in
Fig. 2c we show the behavior of the geostrophic wind
in the same latitude belt. The figures show clearly that
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Fic. 1. Northern Hemisphere 500-mb geopotential height averaged
in time from 1 Dec 1962—28 Feb 1963. Contour interval is. 100 m.

the wave amplitude undergoes fluctuations of more
than 100 m, while the zonal-mean zonal wind shows
fluctuations of a few metérs per second scarcely cor-
related with the wave behavior. As pointed out by Han-
sen and Sutera (1987), the lack of correlation extends
to other zonally averaged parameters, such as the me-
ridional and vertical shear of the zonal wind. Looking
from day 35 onward, the growth of the wave occurs in
a 10-day period, giving an e-folding time of approxi-
mately 4 days. Finally, we may recognize that after the
growth stage there is a long period (about 25 days)
where the amplitude of the wave remains larger than
100 m with a nearly fixed phase; this kind of behavior
is not restricted to this particular winter but is rather
typical of the Northern Hemisphere winter circulation,
as documented by Hansen and Sutera (1986).

This phenomenology calls for an explanation that, in
our opinion, cannot be obtained by a judicious appli-
cation of linear wave—mean flow theories of the kind
discussed in the previous section. In the next sections
we will show evidence that theories can be accommo-
dated when wave—wave interaction is accounted for.

3. The nonlinear resonance: A numerical example

In this section we consider the problem of estimating
the stationary solution of a barotropic model written in
spherical coordinates.

The main question that we address is the following.
BMSS introduced the concept of resonance folding for
a barotropic, topographically forced model by assum-
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ing that the streamfunction of the problem could be
written as

U~ -Uy+g(y) X Ae™,

n=1

(1)
where U is a constant and g such that

3 b
6= - Z,_J; 88,8,,dy * 0. (2)

In that paper, g was left undetermined. Subsequently,
in the reply to Kéllén and Reinhold (1988), it was sug-
gested that g could be determined by solving the fol-
lowing Sturm-Liouville problem:

8y + k>~ V(g =0, 3)

with g zero at the latitudinal walls. The objection that
was raised to this procedure is that, for U constant, the
solution of the previous equation leads to trigonometric
functions for which § is zero, therefore, concluding that
no resonance fold can occur. In a 8 channel, U constant
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corresponds to a superrotation on a spherical earth,
while U constant in spherical geometry allows merid-
ional structures that are not trigometric functions. Thus,
in spherical geometry we can presumably have § dif-
ferent from zero even in the case of U uniform. To
make explicit these ideas, we present in this section
some numerical solutions of the barotropic equation for
the perturbation field with no assumption concerning
the latitudinal structure but retaining that the pertur-
bation field be zero at the walls. The latter implies that,
as mentioned in the introduction, some meridionally
confining mechanism is operating.

We start from the barotropic, stationary, potential
vorticity conservation equation written in spherical co-
ordinates and in dimensionless form:

J(U, VW + f + h) = —vgV¥ + v, VT, (4)

where the classic quasigeostrophic scaling is assumed.
The length, velocity, and timescale are 1000 km, 10
ms~', and 10° s, respectively; the Rossby number Ro
based on the Coriolis parameter computed at 45°N is 0.1.
The height scale H is assumed to be 10 km. Accordingly,
a dimensionless value of 1.0 for the orographic elevation
corresponds to 1000 m of real height, since orography
scales with the product H-Ro. In (4) the following sym-
bols and definitions have been introduced:

v? 1/a* cos(d) Byl cos(h)dy] + 1/a* cos?(¢)
O%/O\?,

a 6.37 rescaled radius of the earth,

¢ latitude,

A longitude, .

J(®, 7) 1/a* cos(¢) (PO, — 04P0,7),

f 2 sin(¢), Q = 27x/0.864,

h(\, ¢) rescaled orography,

Ve rescaled Ekman dissipation coefficient,

where v, is the coefficient of a superdissipative term,
which has been included to prevent the occurrence of
noisy numerical solutions.

Our goal is to find the numerical solutions for a fixed
meridional profile of the zonal wind. Hence, we de-
compose the streamfunction into zonal and eddy part
as follows,

b NT
U=—| Uaddp+ Y U,(d)e™ +cc., (6)

bo n=1

and solve the equation satisfied by the eddy part. Sim-
ilarly, orography is decomposed in Fourier series along
latitude circles:

NT
h=Y h,(d)e™ + c.c.

n=1

Since both amplitude and phase of wavenumber n are,
in general, dependent on latitude, A, will be a complex
function. However, our interest is on the role of non-

MALGUZZI ET AL,

301

linearity in near-resonant conditions and, therefore, we
restrict this analysis to the idealized but simple case in
which orography is formed by a single Fourier com-
ponent, say, n = ng, with a real meridional profile. Con-
sistently, with the analysis of the previous section, the
topographic wavenumber is then set to n; = 3, and its
meridional profile to a sine function vanishing at the
lateral walls with amplitude hq.

The Fourier coefficients of the eddy streamfunction
field are discretized by defining a meridional grid of J
points equally spaced. In order to better compare results
with the minimal theory of BMSS, in the numerical
solutions presented hereafter we spectrally truncate af-
ter zonal wavenumber NT = 2n, = 6. Meridional res-
olution is set to J = 20. In Part II of the present work
(in preparation ) we will investigate the dependency of
the numerical solution on parameters such as the me-
ridional and zonal truncation, channel width, topo-
graphic height, and others. We anticipate here that by
increasing the resolution up to NT' = 20 and J = 80 no
significant changes will be observed in the qualitative
nature of the solutions.

Numerical solutions of the resulting set of nonlin-
ear equations are found by following a solution curve
with the pseudoarclength continuation method of
Newton-Keller. This method has already been ap-
plied to a similar problem by, for instance, Legras
and Ghil (1985), to which we address the reader for
a description of the technique. Here, we briefly
sketch the basic idea that consists of the iteration of
the following two steps: (i) starting from a known
solution for a certain value of an external parameter,
say u, we obtain a guess for the solution at the new
value u + du by linear extrapolation along the tan-
gent to the solution curve at u, and (ii) with several
Newtonian steps we project the linear guess back to
the solution curve. Convergence is checked by sub-
stituting the solution vector into the equations. The
occurrence of singular points (points where deriva-
tives with respect to u become infinite) is treated au-
tomatically by changing the sign of du. Both steps
require the computation of the Jacobian matrix,
which is performed numerically. The algorithm has
proved effective in following solution curves with
very complicated folding in high-dimensional phase
space.

We now define a family of zonal wind profiles U(¢)
in terms of the continuous parameter #. We assume the
following definition:

U(¢) = u-P(4),

where P(¢) is a meridional profile with maximum
amplitude one. For the purpose of the present paper
we choose two particular forms of P in a 30° wide
channel centered at 45°N, namely, a constant wind
profile and a sine function with zeros at 25° and 75°N.
A channel width of this size compares well with the
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ones chosen by Charney and Eliassen (1949) and
Charney and Devore (1979), with which BMSS
wished to compare results. Moreover, the zonal flow
is barotropically stable with no zero-wind lines
(which could make stationary solutions singular)
present in the domain.

The results are presented in Figs. 3a—c for the case
of P constant and h, = 0.04, vy = 0.01, v,;, = 0.002.
Figure 3a shows the maximum amplitude of zonal
wavenumber 3 (upper curve) and 6 (lower curve) as
a function of the zonal wind speed u, Fig. 3b reports
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the phase of zonal wavenumber 3 computed in at the
center of the channel, and Fig. 3¢ shows the eddy
streamfunction field obtained when u = 1.32. The
resonance curve bends to the right, and a region of
multiple equilibria of mean zonal wind is found be-
tween 13.3 and 13.5 m s ~'. Zonal wavenumber 6 at-
tains a much smaller amplitude than the orographic
wavenumber, indicating that the convergence with
increasing longitudinal resolution should be fast. The
eddy streamfunction field presents a meridional
structure particularly simple, with no appreciable
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FiG. 3. (a) Maximum amplitude of zonal wavenumbers 3
(upper) and 6 (lower) vs zonal wind strength. Case with no
meridional shear and h, = 0.04, v = 0.01. (b) Phase of zonal

wavenumber 3 computed at 45°N. (c¢) Eddy streamfunction
plot of the numerical solution for u = 1.32. Contour interval
is 0.5.
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FiG. 4. Prediction of the weakly nonlinear theory
of BMSS for the case in Fig. 3a.

momentum flux. The longitudinal structure is a suc-
cession of steep anticyclones, lying upstream of
mountain ridges, and broader cyclones, which is an
indication of the nonlinear nature of the solution.
These qualitative features of the solution do not
change along the resonance curve.

We now try to make a quantitative comparison with
the predictions of BMSS theory. To this end, we must
compute the parameters given by (12) of BMSS [see
also our (13)], where we define the function g(y) as
the meridional structure of zonal wavenumber 3 ob-
tained from the numerical solution previously dis-
cussed. The parameter § turns out to be roughly —0.2,
with a square of the same order of magnitude as the
previously set hy and v;. We then solve (22) of BMSS,
where the detuning from resonance is computed as dif-
ference from the orographic and stationary wavenum-
ber, which is based on the Rossby wave dispersion, and
where the orographic amplitude is obtained by pro-
jecting the meridional structure of the topography onto
g(y). The results are presented in Fig. 4. The compar-
ison with the corresponding Fig. 3a can be considered
very satisfactory, given the simplifications introduced
in BMSS; in particular, the theoretical curve reaches
higher amplitudes, and is less bended, than the numer-
ical one. .

We continue our presentation of numerical results in
Figs. 5 and 6, where the profile P of the zonal wind
has been fixed to a sine function, thus, taking into ac-
count strong potential vorticity gradients associated to
the zonal wind. Figure 5 refers to a case with very small

2.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

u

FIG. 5. As in Fig. 3a but for the case of jetlike zonal wind
(see text) and hy = 0.02, v = 0.01.

dissipation and orography (h, = 0.02, vz = 0.01, v,
= 0.002), while Fig. 6 shows a typical solution curve
obtained for more realistic values of the parameters (h,
= 0.2, v = 0.08, v,;, = 0.01). As was the case with P
constant, the curve in Fig. 5 is obtained when the pa-
rameters scale according to BMSS theory, while the
case in Fig. 6 is clearly out of the range of validity of
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FiG. 6. As in Fig. 5 but for ky = 0.2, v, = 0.08.
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the theory. Multiple stationary solutions are, however,
still observed.
We conclude this section with some observations.

(i) As for the case of the weakly nonlinear theory
of BMSS, the Jacobian of the eddy streamfunction with
orography does not play any relevant role in the nu-
merical solutions. This has been checked by comparing
numerical solutions with and without such a term. The
occurrence of wavenumber 2n;, in the solution is then
imputable to wave—wave interaction, which is the only
nonlinearity present in our model.

(ii) The above dissipation coefficients correspond
to very long timescales; even in the case of Fig. 6, an
Ekman dissipation timescale shorter than 14 days
would almost eliminate multiple solutions. However,
the barotropic model grossly overestimates both Ek-
man and orographic forcings; in a baroclinic frame-
work, both forcings are proportional to low-level zonal
wind and streamfunction, which attain significantly
smaller magnitudes than vertically averaged quantities.
We will see in Part 1I that the numerical solutions of
the two-layer model show bended resonances with
more realistic values of topography and dissipation.
Meanwhile, in the following sections we again apply
BMSS theory and show that, in a vertically continuous
baroclinic model, stationary waves of very different
amplitude are associated with small changes in Ekman
dissipation and form drag.

(iii) The starting point for the numerical procedure
consists of zero amplitude for u far away from linear
resonance. This algorithm cannot capture other even-
tual solution curves; unless, we define a first guess very
close to the isolated branch. This may be a problem
particularly in the case of Fig. 6, where BMSS theory
does not apply.

4. The vertically continuous model

We consider the quasigeostrophic potential vorticity
conservation:

(8, + 1,9, — 1,3,)

x [VZ\II + By + laz(& ag:)] =0, (7)
P §

s

where now V? denotes the Laplacian operator in the
cartesian coordinates x and y, 8 the meridional gradient
of the Coriolis parameter, ¥ the quasigeostrophic
streamfunction, p,;(z) the background density profile,
and S(z) the static stability profile. The boundary con-
dition at z = 0 is given by the thermodynamic equation

0, + 0,8, — 1,0)¥, + Sw = 0, (8)

- where w denotes the vertical velocity, which is related
to the orographic elevation h(x, y) and to Ekman
pumping by (see Pedlosky 1979)
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E,l,lz )
2Ro vy,
where Ro and E, denote the Rossby and Ekman num-
ber, respectively. As an upper boundary condition we
assume unbounded domain with finite energy density
when z — ; that is, p,¥% - 0.

All physical quantities appearing in (7) —(9) are di-
mensionless: we assume the same physical scales in-
troduced in section 3. In the following we will write
the background density as p; = exp(—z/D), where the
density height scale D is set to 0.9 (9 km).

Following BMSS, we expand the streamfunction
onto a basis of orthonormal meridional structures and
truncate to a single mode denoted by g(y). Hence,

U=-U()y+g(MP(x,z,t) + -+, (10)

where g = 0 at the boundaries and where the zonal and
meridional mean wind profile, denoted by U(z), has
been separated off. By definition, the zonal average of
¢ must be zero. By substituting (10) into (7)-(9),
and by projecting the resulting equations on g(y), we
obtain

(at + Uax)[(/jxx - azlp + —'1_ 6z(& 'l’z)]
ps \S

z2=0,

w=Uh, — Uh + 9)

+ B, — pia//xaz(”gs UZ) v =0 (11)

U + U, — U, + SUR(ikoe™™ + c.c.)
ElIZ
v_ —_ 2 = =
+ SZRO(lJ/u a‘y)=0, z=0, (12)
where
a’ = fgf dy, §=-3 f 88,84y, fgzdy =1,
o (13)

and where the projection over g(y) of the orography
has been assumed as sipusoidal with zonal wavenum-
ber ko and amplitude 24,; namely,

h(x,y) = gMhE** +cc)+ . (14)

Since the atmospheric stationary wavenumber is
around zonal wavenumber 3, we will limit the discus-
sion in the rest of the work by considering only the
orographic component with wavelength 10 000 km,
which implies &k, = 0.628.

In the following, we will assume that the parameter
6 is a small number and that the solution of (11) and
(12) can be expanded in a power series of § as follows:

l/l=¢(0)+5l/1“)+62lfi(2)+ (15)

As shown by BMSS, resonance bending can be
achieved by balancing, at the second order in 6, non-
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linearity with orographic forcing and dissipation. Thus,
the appropriate scaling of dissipation and orography is
E1/2
2Ro

= 621/, il = 62h0’ (16)

where v and h, are numbers of order one.
At the lowest order in 6, the stationary zero order
solution ¢ ¥ of (11) and (12) can be written as

v = AX)fo(z)e™ + cc., (17)

where f;(z) satisfies the following eigenvalue problem:

U[(—k’—az)fo+l62<&azf0>]

ps \S

fo o (P _
ps (Sazv)—

Ud.fo — fd.U=0, z=0, (18)

and where A (x) denotes an arbitrary amplitude that, in
near-resonant conditions, will be the function of the
slow scale X = §%x. The eigenvalue is given by the
stationary wavenumber k° + . In the next section we
shall discuss in detail the solution of (18) for realistic
profiles of U(z) and S(z).

At the first order in 6, the stationary solution of (11)
and (12) turns out to be

YO =A% (2)e** + cc,

where f)(z) satisfies the forced problem

UD~M?—a%ﬁ+~1@(&6m>]
Ps S
1o(ps __ 1,
+[ﬂ—pS62(S62U>]fI— 2f0

Uo.fi ~fidU=0, z=0. (20)

Finally, at the second order in 8, (11) and (12) be-
come

b v+ Lo 20y ) |

[r—Sofges) o

+¢MMM+¢@M”+uM$=0 1)
&+ SURy(ikoe™™ + c.c.)
+ SU(Y Y —aXPy@)y=0

+ Bfo -

(19)

Ulll(Z)
z2=0, (22)

where the x derivatives have been expanded as follows:
0,0, + 6%°0x, 0n—

O + 2820, + O(6%), (23)
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and where x and X must be considered as independent
variables. Equations (21) and (22) have a homoge-
neous part formally identical to the lowest-order prob-
lem (18); hence, as typical in perturbation problems,
the necessary and sufficient condition for the solvabil-
ity of (21) and (22) is that the projection of the forcing
term on the solution of the lowest-order problem be
zero. Thus,

f f ﬁ,— [(21)- e ®]dxdz = 0.  (24)
By means of a double integration by parts, f, and ¢ »
can be exchanged in the double z-derivative term
appearing in (24), at the price of considering two
boundary terms that involve the quantity 8,(Udy @
— U,y ®) computed at z = 0. This quantity can be
written, after (22), in terms of ¢ © and orographic el-
evation. Once the double integration by parts is per-
formed, ¥ ' is eliminated from condition (24), leaving
the following relationship to be satisfied:

zkAzA*f f, 2p’dz—2k2Axf fip.dz

+ fo(0) hoikoe “0% — p(k* + a?)
5 $00*

U(O) A=0.

(25)
The condition of ‘‘near resonance’’ can thus be ex-
pressed as

(ko — k)x = Ak6*x = AKX, (26)

where Ak, the detuning parameter, is an order-one
quantity. The solution of (25) is then written in the
form

A(X) = Age®™, (27)

where the complex constant A, satisfies the following
algebraic equation:

I1Ap|?A¢ — 2kAKA, + £,(0) kg

i VHO? o

2 —_
k U(0) )40 =0

1—ff. zp’dz, J-fopxdz—l (28)

and where we have exploited the freedom to choose a
normalization for f;. By solving (28), the computation
of the zero- and first-order solutions is then completed.
As we will see in the next sections, (28) will in general
admit multiple solutions. We notice that in the limit v
—0and h, — 0 (28) st1ll admits multiple steady states;
namely, A, = 0 and A} = 2kAk/I. Hence, the nonlinear
nature of our problem implies multiple free solutions.
The first one is a pure axisymmetric flow, while the
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Fi1G. 7. Vertical profiles of density (p,), static stability (S),
and zonal wind (U) in dimensionless units.

other two are finite amplitudes waves with phase op-
position. The inclusion of topography and dissipation
slightly modifies the zonally symmetric solution with a
small amplitude wave, while the large amplitude so-
lutions assume a definite phase relative to orography
(see section 6).

5. Vertical structure problem

The solution of the lowest-order problem (18)
gives the vertical structure of stationary and linear
Rossby waves superimposed on the zonal wind U(z),
and for a frictionless atmosphere characterized by
background density and static stability function of
the vertical coordinate. It is well known that this
problem admits vertically trapped or propagating so-
lutions, essentially depending on the strength of the
mean zonal wind. Since we are interested, in the pres-
ent work, in modeling the amplification of tropo-
spheric waves in winter conditions, we will limit our-
selves to trapped solutions for which p,f § goes to
Zero as z = ©,

In Fig. 7 we report the (dimensionless) vertical pro-
files chosen for density, zonal wind, and static stability.
The wind profile has been obtained by averaging in
latitude the observed structure of the midlatitude jet
stream typical of winter conditions, as shown, for in-
stance, by Lindzen (1990). Polynomial fits are used to
interpolate the data so that vertical profiles and their
derivatives are known at any vertical point. Above the
height of 50 km and up to infinity, the zonal wind has
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FiG. 8. Vertical profiles of zero-order (fy) and first-order (f,)
solution corresponding to the first trapped eigenmode.

been kept constant, with a smooth match with the wind
below 50 km. The averaged zonal wind at z = 0 turns
out to be roughly 2 m s ~'. The static stability parameter
for winter conditions has been adapted from Gutowski
(1985), which reports the Brunt— Viisili frequency up
to the height of 15 km. Above this height the static
stability is kept as constant and equal to 4.5 dimen-
sionless units, roughly three times the tropospheric
value. Finally, the dimensionless value of f is set to
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FIG. 9. As in Fig. 8 but for the second trapped eigenmode.
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1.6, which corresponds to the physical value computed
at 45°N.

Due to the complexity of the vertical profiles, (18)
has to be solved numerically. This is done by defining
a vertical grid of equally spaced points and by dis-
cretizing the vertical derivatives with a second-order
centered scheme. This reduces (12) to a generalized
eigenvalue problem, which can be solved for the ei-
genvalue K* = k? + a?. As an upper boundary con-
dition, in the numerical code we impose 9,f, = 0 at
Z = Zmax. implying the presence of a rigid lid. This
artificial condition may somewhat influence structure
and eigenvalue of trapped modes; however, the ‘‘ro-
bustness’’ of the numerical solution can be checked
by increasing the value of z,,... Moreover, with U and
S being constant above a certain height, the numeri-
cal solution can be compared to the exact solution
that is known analytically as z = o« (see Pedlosky
1979). It turns out that for z,., = 8 the fit between
analytical and numerical solution is excellent in the
range of values of z somewhat above 5 and somewhat
below 8. We conclude that the artificial upper bound-
ary condition does not affect trapped modes. With
the above choice of vertical profiles, two trapped so-
lutions are found that are characterized by eigenval-
ues K? = 0.91 and K3 = 0.66.

Next, we solve the first-order problem (20) by using
the two profiles of f, just found. The solution of (20)
is also computed numerically by means of a scheme
consistent with the one previously described. Before
solving (20), the parameter k* (or @) must be speci-
fied. Since we want to be close to resonance, Xk must be
close to kg, the mountain wavenumber. Hence, the fac-
tor 4k> + a? in (20) can be replaced by 3k3 + K3,.
The vertical structure of the zero- and first-order solu-
tions and for the two trapped modes is shown in Figs.
8 and 9, respectively, where the zero-order solution has
been normalized according to the last of (28). Clearly,
the eigenmode in Fig. 9 propagates in the vertical
through the jet stream and is trapped by the strong
stratospheric westerlies; therefore, we shall restrict our
study to the eigenmode in Fig. 8.

6. Amplitude equilibration

The amplitude of the stationary Rossby wave is de-
termined by condition (28). In (28) we can consis-
tently replace k> + a? and k with K7 and k,, respec-
tively; this leaves us with three unknown parameters:
ho, Ak, and v. It turns out convenient to estimate the
ratio R = v/hy, which is a quantity independent of 4.
In fact, after (16), we obtain

2Av 172
E2 (f—C)

T 2Roh  h,,

(29)
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where A, denotes the vertical turbulent viscosity co-
efficient, f. the Coriolis parameter computed at a cen-
tral latitude, and h,,, the amplitude of the zonal
wavenumber three Fourier component of the earth
orography in physical units. By assuming A, = 5
m? s~! (Holton 1979) and h,., = 300 m, we get R
~ 1. However, in this way we are likely to overes-
timate real dissipative effects; in fact, in a baroclinic
atmosphere, the insurgence of a secondary flow in-
side the planetary boundary layer will quickly spin
down the vorticity at the top of the layer, thus reduc-
ing the efficiency of Ekman dissipation. In other
words, it is not realistic to consider the effect of Ek-
man dissipation as ‘‘perturbative’’ over the ampli-
tude of the streamfunction at z = 0. Hence, we will
also investigate values of R smaller than one. Finally,
the detuning of Ak can be easily expressed as a func-
tion of a? by the definition of the eigenvalue K3:

k2 + a® - K?
Ak TWE (30)
Thus, the uncertainty in the numerical value of a? is
obviously reflected in the uncertainty in the knowledge
of the detuning from resonance.

Figure 10a shows examples of solutions of (28)
(modulus of Ag) as functions of Ak for some values
of h, and R = 0.5, while Fig. 10b reports similar
curves but for two different values of R and fixed A,.
For a fixed ratio between dissipation and orography,
the resonance curves attain the same value of maxi-
mum amplitude at the same value of Ak; moreover,
by decreasing h, (increasing ) the resonance bends,
increasing the region in the Ak space where multiple
equilibration is found. Resonance bending is even
more spectacular when R is decreased by only a
small amount, as shown in Fig. 10b. Note also that
resonance bent does not depend upon the sign of 6.
Phase change through resonance, shown in Fig. 10c,
indicates that, in the subresonant (superresonant)
case, the wave tends to be in opposition (coinci-
dence) of phase with orography. This phase behavior
is very similar to what is shown by the numerical
solutions of the previous section (see Fig. 3b). In
Fig. 10 the dotted curve represents the amplitudes of
two of the solutions of (28) obtained in the limit of
v = 0 and hy = 0 (which have opposite phase),
while the horizontal axes represent the axisymmetric
solution. Thus, the inclusion of small topography
and dissipation fixes the phases of all solutions and
perturbs the zonally symmetric equilibrium. More-
over, it is easy to show that (e.g., Landau and Lif-
chitz 1969) the smaller and larger amplitude solu-
tions are stable (at least for perturbations whose dy-
namics is approximated by the asymptotic theory)
while the intermediate one is unstable. This instabil-
ity is easily identified with a wave—wave interaction



,

308 VoL. 53, No. 2
a 3.9 T T T T T T T T T T T T T b 3.9 T T T T T T T T T T T T
2.8 f ] 2.6 ]
2.6 - . 2.6 :
2.4 F ] 2al 1
2.2k d 2.2 f# ]
- F & R=1/3 i
2.0 : 4 2.0 | ki 4
1.8 F 4 1.9 | i }
— 1.6+ T 1.6+ *’-:.:
<° L e <° L hoAd
s —_— AR
—_— 1.4 **g - 1.4} R 4
- ﬁ"&f‘.’&* p I +.0F 4
1.2 Rl < 1.2 O -
“t & et B=25 “r Lot
,.** RN 0 +.+ 1
1.0 AN + 4 1.0 + 4
- :" :* N + o : N M -
8| K :‘: * 4 el v+ -
— +
o ++*f+ :_ﬁ- : A ho_l_oﬁ" < - *b‘f.-* =1 4
“r M g CaN =0.5 *, e, ] e ol 7
4 W # s *, - ] i SR 1
g Mﬁ’ﬁ* j'* . "', "t M -: .4 :- ) -+ <
¥ 4. 4
2 Wa www hww ; L %\\“‘—‘w‘_.ﬁ ]
1 | - | T WY W ST N S N | TR S T It ] ") 14 L+ 1 | SRR SR SN TSNS SN NN T N N WA SR N | - Fy ]
1.6 -8 -6 -4 -2 8 .2 .4 .6 .B 1.8 1.2 1.4 1.6 1.6 -8 -6 -4 -2 8 .2 .4 .6 .8 1.8 1.2 1.4 1
Ak Ak
c 35 F T T T T T T T T T T T
sof M .............................. E
25 F \\\ 3
20 fF ) “'*m -
E b E
1.5F d 3
r +F 3
1o f *+++* ]
C W#’* -:
m L F Py ] . -
2) F & ] Fic. 10. (a) Amplitude equilibration ({4o| vs Ak) for R
T of TN 3 = 0.5 and hy = 0.5, 1.0, and 2.5. Units are dimensionless. (b)
A £ E As in Fig. 10a but for fixed hy (= 0.5) and R = 1, 153. (c)
-5 F 3 Phase of Ay vs Ak obtained for Ay = 0.5 and R = 1/3. In all
3 ; 3
ok 3 cases the dotted curves represent the solution of (28) obtained
£ E in the limit Ay, v = 0.
-5 F 3
2.0 F —
3.0 f E
_3'5 E 1 1 1 1 N | 1 | W S W T | 1 1 1 | SO | 1 | L | B
-1.0 -8 -6 -4 -2 [*] .2 .4 .6 .8 1.8 1.2 1.4 1.6
Ak

instability with zero phase speed because of the pres-
ence of topography.

In Fig. 11 we report a plot of the zero- plus first-
order streamfunction in the x—z plane, where parame-
ters have been fixed at A, = 0.5, R = 0.5, and Ak
= 0.25, for which three solutions exist. Mountain
ridges are centered at the left and right bottom corners
of the figure, while orographic depression is located at
the center of the x-domain. The plot in Fig. 5 is relative
to the high-amplitude solution, whose anticyclone lies
just upstream of the mountain ridge, in agreement with
observations. Note also that the effect of nonlinearity
is to steepen the anticyclonic part of the solution, lo-
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calizing the ‘‘blocking’’ pattern in a more realistic fash-
ion. This particular aspect is the direct consequence of
quadratic nonlinearity and has already been encoun-
tered in other studies (e.g., Malguzzi 1993). Again, the
analogy with the numerical solutions presented in sec-
tion 3 is clear.

7. Second-order correction and energetic
The second-order solution is governed by (21) and

(22), with A given by (27) and (28). By substituting
the following tentative expression

.6
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FiG. 11. Cross section in the x—z plane of the (high amplitude)
zero- plus first-order solution, obtained for hy = 0.5, R = 0.5, &
=0.3, and Ak = 0.25. Units are dimensionless. The topographic
ridge is centered at x = 0. The “‘tropopause’’ (z = 1.2) is marked by
a horizontal solid line.

U@ = AfH(2)e*™ + cc,
into (21) and (22) we get

LEC (31
[( kz—az)fz+p6< zfz)]"‘ﬁfz
_L

Ps

az(% BZU) = —|Aol2fofs + 2UKAKfy (32)

A*
Ud.f, — f,0,U = SUhOIA|2
k* +

—iSu(—k—a——)fo, z2=0. (33)

The right-hand side of (33) can be rearranged, after
(28), as

SU(0)
fo(0)

which is a real expression. Hence, the right-hand side
of (32) and (33) are both real, implying a real solution
for f,(z). It is now clear that the solution up to the
second order in § is equivalently barotropic. This fact
has important implications as far as the energetics of
the solution is concerned: there is no available potential
energy conversion in the interior of the domain to com-
pensate for energy losses due to Ekman friction. In this

——= (I|Ao|* — 2kAKk), (34)
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respect, the present solution differs from the one of
Benzi et al. (1986b), in which an order-two heat flux
was present due to phase difference between zero- and
second-order solutions. The physical difference is the
presence, in Benzi et al. (1986b), of a form of internal
dissipation which demanded for energy conversion also
in the interior of the domain. We suggest that the west-
ward tilt with height of stationary planetary waves,
pointed out by some observational study (e.g., Dole
1982), may be imputable to some kind of internal dis-~
sipation; in the presence of Ekman pumping only, all
energetic conversions take place inside the boundary
layer, which is placed at z = 0 in the present study. We
will return to this important point in Part II of the pres-
ent work; we anticipate here that stationary solutions
of the two-layer model indeed share this property.

A quick glance at the energetics of the streamfunc-
tion defined by (11) and (12) shows that our oro-
graphic waves are maintained against dissipation by
form drag conversion, at least when the stationary state
is reached. In fact, by averaging in x equation (11)
multiplied by p,¢ we get

02
o o5 +e 5)54]

- o] & - U2 + & i, (39

where the overbar denotes x average. Equation (35)
states that the time derivative of kinetic plus potential
energy of the eddy field, at a particular height inside
the vertical domain, is the sum of a heat flux term plus
the divergence of the vertical flux of total energy. The
energy flux is the sum of two contributions, one of
which is zero for stationary solutions. Hence, being the
correlation between meridional wind and temperature
zero in our case up to the second order, the pointwise
energy balance is trivial. By further integrating (35)
with respect to z, and by using the boundary condition
(12), we finally obtain

oops = 1
—Ke+Pe =f— IS £ £
dt( ) 0o S l/ll[ldz

Evlz
- {ﬁg(‘/’f + a’P?)| =0

+ U(0)YAp | ,—o(ikoe™™ + c.c.). (36)

Up to the second order in § and for stationary solutions,
(36) reduces to

2uf5(0)%]| Aol * (kG + @?)
= 2Im(Ao)kofo(0)U(0)ho, (37)

which expresses the balance between energy dissipated
in the Ekman layer and kinetic energy conversion from
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zonal to eddy motion due to form drag, associated with
phase shift between the low-level streamfunction and
orography. Notice that the energy balance (37) is im-
plied by the secular condition (28), as can be readily
demonstrated by taking the imaginary part of (28) mul-
tiplied by Ag . .

Hansen and Sutera (1987) have shown that the fluc-
tuations of midlatitude planetary-scale wave ampli-
tudes cannot be explained in terms of fluctuations of
the vertically averaged zonal mean wind. This piece of
evidence has always constituted a problem for baro-
tropic theories of multiple equilibria, like those of
Charney and Devore (1979) and BMSS, because re-
lation (37) strongly correlates wave amplitude with
form drag. However, in the vertically continuous
model, the wave amplitude at the ground strongly de-
pends on the wind speed there [the lower boundary
condition (18) implies f,(0) — 0 when U(0) — 0],
making the vertically averaged zonal wind virtually in-
dependent on the eddy amplitude aloft. In fact, the
barotropic theory of BMSS give values for both sides
of (37) that are at least one order of magnitude larger
than those obtained, with the same vertically averaged
wave amplitude, in the baroclinic case. Thus, while the
barotropic model is inconsistent with the above set of
observations, the vertically continuous model does not
suffer from the same hindrance.

The actual determination of the second-order correc-
tion is superfluous for our purposes and will not be
performed. We point out only that (32) and (33 ) define
a singular problem, being left-hand side identical to the
zero-order problem (20). Nevertheless, the second-or-
der problem admits infinite solutions, which can be ob-
tained by neglecting one equation and by fixing arbi-
trarily one variable among the N ones forming the nu-
merical scheme of (32) and (33).

8. Conclusions

In this paper we have discussed a possible mech-
anism that could generate part of the observed plan-
etary-scale low-frequency variability. The mecha-
nism rests on the assumption that low-frequency
variability can be, along with other processes, a man-
ifestation of the transition among planetary-scale
weather regimes. We have shown that, by fixing the
zonal wind profile, it is possible to find multiple sta-
tionary solutions of the perturbation field both in a
numerically solved barotropic model and in a simple
theory for a vertically continuous quasigeostrophic
equation, in accordance with an earlier theory that
we presented several years ago. The theory relies on
the hypothesis that wave—~wave nonlinearity is per-
turbative and that topographic and dissipative forc-
ings are even smaller quantities. We do not have di-
rect measures of such quantities for the atmospheric
general circulation; however, as will be clear in Part
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II, even when generally accepted values of topo-
graphic elevation and Ekman timescale are chosen,
the numerical solutions of our model show the classic
bended resonance, which suggests that the ordering
could be the one proposed here.

By applying the same theory to a vertically con-
tinuous atmosphere, we have shown that external
Rossby waves can be maintained to finite (large) am-
plitude even in the absence of substantial heat fluxes,
by balancing Ekman dissipation with a small moun-
tain drag. Of course, the latter result should be sub-
stantiated by appropriate observational analysis,
though some hints are already suggested by the work
of Hansen (1988). We intend to pursue further these
findings by judicious use of the observations along
the above-discussed line.

Our multiple solutions have been obtained by solv-
ing only the eddy vorticity equation; no mention has
been given to the equation of the zonal part. The
equation for the zonal wind balances form drag, eddy
stress terms, and an external forcing that usually as-
sumes the form of —v[U — U*(y, z)], where U* is
a specified wind profile. From the mathematical point
of view, our solutions are obtained in the limit in
which the external forcing can be much larger than
the other forcing terms. This is precisely the case of
the weakly asymptotic theory of BMSS, where form
drag and eddy momentum and heat fluxes are of sec-
ond order. Thus, our multiple solutions correspond
to the same zonal wind profile, unless there are rea-
sons to believe that v is second order as well. The
above form of the external forcing has no sound
physical justification; it simply represents a Newto-
nian relaxation toward an arbitrary profile that mim-
ics many physical processes that may or may not be
described by the quasigeostrophic vorticity equation
(like eddy momentum flux by baroclinic eddies,
ageostrophic effects on the mean meridional circu-
lation, and so on) and that may be characterized by
short timescales.

For the sake of clarity we have not fully discussed
many related issues that we hinted at in the body of
the paper and that we will address in a forthcoming
one. In Part II of this work we will present an im-
proved theoretical analysis, not based on meridional
truncation, in which nonlinearity is explicitly eval-
uated and not parameterized by a 6 term. We will also
assess the limit of validity of the weakly nonlinear
theory, through scaling arguments and comparisons
with numerical solutions, and account for the ro-
bustness of the numerical results by considering dif-
ferent physical parameters—like channel width,
zonal wind latitudinal profile, topography, and Ek-
man dissipation-—both for the barotropic and a sim-
ple two-level baroclinic model.’
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