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Abstract Extreme weather occurrences carry enormous social and economic costs and routinely garner
widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial
importance. Here we propose a novel predictability pathway for extreme events, by building upon recent
advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to
identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on
time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a
particularly good predictability of the extremes. We specifically test this technique on the atmospheric
circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface
temperature extremes in Europe up to 1 week in advance.

Plain Language Summary Extreme weather occurrences carry enormous social and economic
costs and routinely garner widespread scientific and media coverage. The ability to predict these events is
therefore a topic of crucial importance. Here we propose a novel analysis technique for improving the
prediction of extreme events, which identifies the large-scale atmospheric circulation configurations
affording the best predictability. We specifically test our technique on the atmospheric circulation in the
North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes
in Europe up to 1 week in advance.

1. Introduction

Dynamical systems techniques provide a rigorous mathematical framework for describing atmospheric
flows and, more generally, the climate system. Each instantaneous atmospheric state corresponds to a
point in phase space, and the evolution of the atmosphere can thus be described by the trajectory joining
these points. Early efforts in this direction showed that atmospheric motions are chaotic and settle on a
finite-dimensional attractor—namely, “the collection of all states that the system can assume or approach
again and again, as opposed to those that it will ultimately avoid” [Lorenz, 1980]. The attractor’s average
dimension (D) indicates the minimum number of degrees of freedom needed to span the subspace occu-
pied by the attractor. However, two major obstacles have limited the application of dynamical systems
analyses to atmospheric motions. First, computing D for systems with a large number of degrees of
freedom is nontrivial, and traditional approaches have proved unreliable when applied to atmospheric
flows [Grassberger, 1986; Lorenz, 1991]. Moreover, this approach is ill suited to study extreme weather
events, which carry major social and economic costs [e.g., Kunkel et al., 1999; Gasparrini et al., 2015] and
attract intense scientific and popular attention [e.g., Herring et al., 2015]. The extremes are associated with
transient states of the atmosphere [Vautard and Ghil, 1989]. Their study therefore requires instantaneous,
local properties, rather than average quantities such as D. Local properties can further provide insights into
the stability of the associated atmospheric configuration [Vannitsem, 2001].

Here we compute two instantaneous dynamical systems metrics for the atmospheric circulation over
the North Atlantic: the instantaneous dimension (d) and the inverse of the persistence time (θ) of the
daily mean 500 hPa geopotential height. The local properties of a dynamical system can be fully
described by these two quantities [Lucarini et al., 2016]. We then show that they provide a novel pathway
for the prediction of extreme weather events. We focus on a societally relevant case: wintertime
(December, January, and February—DJF) temperature extremes over Europe. Cold extremes can cause
significant increases in mortality [e.g., Analitis et al., 2008], while warm extremes can affect snow and
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water availability and crop yields and therefore impact the local economies [e.g., Gooding et al., 2003;
Beniston, 2005].

The North Atlantic region has been widely studied, and its wintertime dynamics are dominated by well-
known large-scale modes of variability, chief among them the North Atlantic Oscillation (NAO). The latter
is a key source of atmospheric predictability in the region, across a broad range of time scales [e.g.,
Johansson, 2007; Ferranti et al., 2015]. A method selecting atmospheric configurations offering the maximum
predictability would therefore be expected to capture some aspects of this mode while hopefully also
offering additional insights. This motivates our choice of the Euro-Atlantic region as the ideal test bed to
verify whether our novel methodology is robust while at the same time providing a useful complement to
more traditional analyses. However, we stress that our approach is entirely general and may be extended
to other variables, seasons, and geographical domains. We further envisage that the metrics we adopt may
in the future be applied in an operational forecasting context.

2. Data and Dynamical Systems Metrics

We use daily mean 500 hPa geopotential height and 2 m temperature data from the European Centre for
Medium-Range Weather Forecasts’ ERA-Interim reanalysis [Dee et al., 2011]. The data sets have a horizontal
resolution of 0.75° and 1°, respectively. We focus on the winter seasons (December–February, DJF) during
1979–2011 and select a domain covering the North Atlantic and Europe (75°W–50°E, 25°N–75°N). Previous
analyses have shown that the dynamical systems metrics are insensitive to resolution and linearly insensitive
to the exact geographical boundaries chosen [Faranda et al., 2017]. Mid-tropospheric geopotential height is
extensively used to describe the major modes of variability affecting the North Atlantic [e.g., Baldwin and
Dunkerton, 2001] and more generally large-scale atmospheric features, including teleconnection patterns,
atmospheric blocking, and weather regimes [e.g., Michelangeli et al., 1995; Davini et al., 2012]. We therefore
select it as a good proxy for the large-scale atmospheric circulation over the North Atlantic sector.

In order to compute the instantaneous dimension and inverse persistence, we interpret the geopotential
height field as a point along the system’s trajectory in phase space. The values of d and θ for a specific point
in phase space describe the local behavior of the segments of the trajectory that pass close to that point. A
scatterplot of d versus θ is shown in Figure S1 in the supporting information. A derivation of the two metrics,
based upon Süveges [2007], Freitas et al. [2010], Faranda et al. [2011, 2016], and Lucarini et al. [2012, 2016], is
provided in the supporting information. d is closely linked to the density of the trajectories (and hence to the
local Lyapunov exponents) and provides a measure of the maximum divergence of the trajectories. In simple
terms, a given atmospheric state with a low d is more likely to evolve in a similar way to all its neighboring
states than a case with high d. θ is the inverse of the average persistence time of trajectories around a given
point, and it takes values in [0, 1] [Leadbetter et al., 1983]. Atmospheric states with a low θ are persistent and
will therefore evolve—and diverge from neighboring states—slowly. Both quantities are therefore closely
linked to the predictability afforded by a given atmospheric state. Figure 1a provides an idealized illustration
of the above for trajectories with low instantaneous dimension (blue trajectories) and high persistence
(red trajectories).

We focus here on atmospheric configurations which have both low d and low θ, namely, the states that
should provide the maximum predictability of the trajectories’ forward paths. Specifically, we consider days
where both d and θ are in the lowest 20 percentiles of their respective distributions. For the case of several
consecutive days satisfying this condition, we select the first day in the series. The rationale behind this
choice is to extract the maximum forward predictability from the metrics. This is also the most practical
option for use in operational contexts. Say, for example, that we opted to select the local minimum of each
threshold exceedance rather than the first day. For a series of several days continuously exceeding the
threshold, the local minimum could only be determined at the end of the series, while the initial exceedance
can be spotted on the day it occurs. We do not simply select all days below the chosen percentile threshold
because we wish to avoid double counting when computing lagged composites. We term the selected
events dynamical extremes. These account for ~4.4% of the time steps, or roughly 4 days every winter. The
choice of the 20th percentile as threshold is a compromise between the competing demands of selecting
states that can be qualified as dynamical extremes and having a sufficiently large number of events. In fact,
our aim is to identify a pathway for predictability which could be applied in an operational forecasting
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context. A result which, for exam-
ple, were only to apply to 1 day
every winter would have a limited
value. Reasonable variations in this
threshold were tested (22.5th,
17.5th, 12.5th percentiles) and
were found not to qualitatively
alter our conclusions (not shown).

The 2 m temperature extremes
at each grid point are defined as
all days exceeding the 10th and
90th percentiles of the local distri-
bution of deseasonalized anoma-
lies. These are standard thresholds
used in the literature [e.g., Yiou
and Nogaj, 2004]; repeating the
analysis with the 5th and 95th per-
centiles (not shown) yields qualita-
tively similar results. The anomalies
are defined as departures from the
long-term daily average. For exam-
ple, the climatological value for the
1 December is given by the mean
of all 1 December in the data set.
We do not apply the same proce-
dure as for the dynamical extremes
to select temperature extremes
because these are chosen based
on their societal and economic

impact rather than on considerations based on atmospheric configurations. It would indeed make little sense
to only consider the first in a series of very cold or very warm winter days.

Statistical significance is assessed using both Monte Carlo random sampling with 1000 iterations and a sign
test. The former is used to test that the positive (negative) deviations from the climatology associated with
the dynamical extremes are significantly more positive (negative) than what would be expected for a random
collection of winter days. First, distributions of outcomes based on random sets of winter days with the same
number of members as the number of dynamical extremes are created. Next, one-sided 5% significance
bounds are obtained directly from the percentiles of these distributions. The sign test is based on sign agree-
ment between the individual members of the composite maps. The fraction of members displaying the same
sign as the overall composite is counted at each grid point, and areas where at least 60% of the composited
events agree on the sign are identified. Assuming a binomial process with the same number of draws as the
dynamical extremes and equal chances of positive or negative outcomes, a 60% threshold is beyond the 99th
percentile of the distribution.

3. A Dynamical Systems Predictability Pathway

We now analyze the dynamical extremes as defined in section 2 above. Figure 1b shows the composite
500 hPa geopotential height anomaly patterns for the selected events. These correspond to an anomaly
dipole which is reminiscent of a positive NAO phase, albeit shifted to the east. In principle, two points with
similar d and θ could represent very different flow configurations. We find that this not be the case: the vast
majority of the composite members agree on the sign of the anomalies suggesting that, at least for dynami-
cal extremes, similar flow configurations generally correspond to similar regions in d-θ space. Coherent large-
scale features are retained at positive lags, up to ~6–7 days following the selected extremes (Figures S2a, S2c,
S2e, and S2g), beyond which sign agreement is largely lost. Consistently with our interpretation of d and θ,

Figure 1. (a) Example of trajectories evolving from neighborhoods (marked
by the green spheres) with low instantaneous dimension (blue trajectories)
and high persistence (red trajectories) in an idealized three-dimensional
phase space. The low dimension implies that the maximum divergence of
the blue trajectories is small but gives no information on how rapidly they
leave the neighborhood. The high persistence implies that the trajectories
are slow in leaving the neighborhood but gives no information on their
maximum divergence. (b) Composite 500 hPa geopotential height anomalies
(m) for days corresponding to low d and θ. The grey contours mark
regions where more than 60% of the members of the composite agree
on the sign of the anomalies (see section 2).
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the atmospheric patterns associated with the largest instantaneous dimension and lowest persistence
diverge quickly at positive lags, and the geopotential height anomaly composites largely lose coherence
by lag +3 (Figures S2b, S2d, S2f, and S2h).

Climate or weather extremes are, by their very definition, rare. They should therefore generally be associated
with similarly unusual large-scale atmospheric flow patterns [e.g., Grotjahn et al., 2016]. While there is no
guarantee that dynamical extremes correspond to weather extremes at a specific location, it is therefore
plausible to expect some correspondence between the two, at least at a continental scale. Figure 2 displays
the changes in the frequency of 2 m temperature extremes associated with dynamical extremes, relative to

Figure 2. Fractional changes in the frequency of wintertime (a, c, e, and g) hot and (b, d, f, and h) cold surface temperature
extremes conditional on low instantaneous dimension and high persistence events relative to the climatology, at lag 0
(Figures 2a and 2b), lag +4 (Figures 2c and 2d), lag +6 (Figures 2e and 2f), and lag +8 days (Figures 2g and 2h). The
black boxes in Figure 2c mark the domains used in Figure 4 (see also Table S1). Only statistically significant values obtained
from a random sampling procedure are shown (see section 2).
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the wintertime climatology. A value of 1 means that the frequency of temperature extremes is insensitive to
the dynamical extremes; a value of 0 means that there are no temperature extremes for the selected
dynamical extremes; a value of 2 means that there are twice as many temperature extremes as in the
climatology. At lag 0 (Figures 2a and 2b) the dynamical extremes correspond to a higher frequency of
warm extremes and a decreased frequency of cold extremes across large parts of western, continental and
northern Europe. At lag +4 days (Figures 2c and 2d) the pattern is similar but now displays larger-frequency
changes for the warm extremes over the Mediterranean. The only regions showing an inverse pattern, with
decreased warm occurrences and increased cold occurrences are northern and western Scandinavia and the
North Sea. By lag +6 days (Figures 2e and 2f) the largest changes in the temperature extremes have shifted
eastward and are now centered over eastern and southeastern Europe. By day +8 (Figures 2g and 2h) there
are two main regions of significant changes, with a heightened frequency of warm extremes over western
Russia and a decrease in cold extremes over the Eastern Mediterranean. These changes in extreme event
frequency are largely consistent with the anomaly patterns shown in Figures 1b and S2. The cyclone-
anticyclone dipole associated with the dynamical extremes, which displays a southwest to northeast tilt,
draws warm subtropical air over most of Europe, with the exception of northern and western Scandinavia.

We next test the correspondence between dynamical extremes and the individual weather extremes at posi-
tive lags. Figure 3 displays the fraction of dynamical extremes which are followed within 2–4 days (Figures 3a
and 3b) and 5–7 days (Figures 3c and 3d) by a temperature extreme. Note that if more than one temperature
extreme falls within the lag interval for a single dynamical extreme, only one is counted. The dynamical
extremes display significant hit rates for both warm and cold extremes across the whole continent up to
7 days. Hit rates for warm extremes locally exceed 40%, while hit rates for cold extremes reach below 4%.
In other words, conditioning on a dynamical extreme significantly raises the chances of warm extremes
and at the same time essentially excludes the possibility of cold extremes at a regional scale over several days.
As expected, there is a good agreement between Figures 2 and 3, with the regions which show the largest
positive changes in Figure 2, displaying high-fractional matches in Figure 3.

To further illuminate the predictability afforded by the dynamical extremes, we examine how the lagged dis-
tributions of regional temperature anomalies are modulated by the dynamical extremes. We focus on three
broad domains selected to cover most of the European continent, marked by the black boxes in Figure 2c

Figure 3. Fraction of low instantaneous dimension and high persistence extremes associated with (a, c) hot and (b, d)
cold wintertime surface temperature extremes at a given location, at lags +2 to +4 (Figures 3a and 3b) and lags +5 to
+7 days (Figures 3c and 3d). Only statistically significant values obtained from a random sampling procedure are shown
(see section 2).
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(see also Table S1). Figure 4 displays the cumulative distributions of land-only area-averaged temperature
anomalies over these domains for the full wintertime climatology (blue) and conditional on the occurrence
of a low d and θ episode (red), at lags of �2 to �4 days (Figures 4a, 4c, and 4d) and �5 to �7 days
(Figures 4b, 4d, and 4f). In all domains, the dynamical extremes have major effects on the large-scale
temperature anomalies. In western Europe they correspond to significant increases in the 90th percentile,
and associated changes in the amount of days exceeding them, at short positive lags (Figure 4a). Over
Eastern Europe a significant shift in both the 10th and 90th percentiles is seen at both lag ranges
(Figures 4c and 4d). Over Russia there is relatively little change in these percentiles at short lags, while at days
+5 to +7 there is a marked shift in the 90th percentile of the distribution (Figure 4f). At the same time we note
that the shift in the median over this domain is larger for shorter lead times. Finally, we note that all medians
of the distributions for dynamical extremes are larger than their climatological counterparts and statistically

Figure 4. Empirical cumulative distributions of land-only area-averaged 2 m temperature anomalies (K). The blue curves
correspond to the wintertime climatology; the red are conditional on the occurrence of a dynamical extreme (a, c, and e)
2 to 4 days and (b, d, and f) 5 to 7 days before. The dashed vertical linesmark the climatological 10th and 90th percentiles. The
continuous vertical lines mark the medians of the two distributions. The blue crosses mark the statistical significance for
the shift in the percentiles (horizontal bars) and the change in the number of events above/below the climatological
percentiles (vertical bars). The edges of the bars correspond to the 5th and 95th percentiles of these quantities computed
using a random sampling procedure (see section 2). See Table S1 for the domain boundaries.
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different under a Wilcoxon rank sum test [Mann and Whitney, 1947] at the 1% significance level. This is fully
consistent with the reduction in cold extremes and increase in warm extremes shown in Figure 2.

4. Relation With the NAO

Temperatures extremes over Europe are often discussed in the context of the NAO [e.g., Yiou and Nogaj, 2004;
Cassou, 2008]. The two phases of the NAO are also the initialization states that afford the best predictability in
ensemble forecasts [Ferranti et al., 2015]. Since the dynamical extremes should capture the atmospheric con-
figurations offering the best predictability, it is not surprising that they resemble an NAO dipole. At the same
time, it is important to highlight that these metrics provide complementary information to an NAO-based
analysis. We define a daily NAO index (NAOI) as the difference in average area-weighted 500 hPa height
anomalies over the domains (70°W–10°W, 35°N–45°N) and (70°W–10°W, 55°N–70°N). This follows the defini-
tion adopted by the National Oceanic and Atmospheric Administration’s Physical Sciences Division of the
Earth System Research Laboratory (http://www.esrl.noaa.gov/psd/data/timeseries/daily/NAO/). The mean
NAOI value for the dynamical extremes is �0.10 at lag �4, 0.22 at lag 0 and 0.15 at lag +4 days. One can
further repeat the analysis presented in Figures 2 and 3 selecting NAO+ extremes with the same procedure
used for dynamical extremes. We now use the 80th percentile as threshold, so as to obtain a similar number
of events to the dynamical extremes (~4.1% instead of ~4.4%). Only ~5.1% of the selected NAO+ extremes
match a dynamical extreme; similarly, roughly 25% of days above the NAO+ threshold match days below
the dynamical extremes threshold. Consistently with this, the changes in the occurrence of temperature
extremes associated with the NAO display some important differences from those seen for the dynamical
extremes (cf. Figures 2 and S3). We further note that while at lags 0 and 4 the NAO has a stronger impact
on the temperature extremes than the dynamical extremes, the two become comparable around lag +6
and by lag +8 the dynamical extremes display a stronger regional footprint. This is consistent with our
interpretation of dynamical extremes as the atmospheric states which give the best forward predictability
as opposed to states which instantaneously correspond to the largest temperature anomalies.

5. Discussion and Conclusions

Using simple instantaneous dynamical systems metrics, we identify the most stable and recurrent atmo-
spheric states, which are also the states providing the best forward predictability. We apply this technique
to the North Atlantic sector. A large part of the atmospheric variability, and predictability, in this region is
associated with the NAO. It is therefore reassuring that the atmospheric configuration we obtain from our
dynamical system analysis resembles an NAO dipole. At the same time the high-predictability days we select,
termed dynamical extremes, do not systematically match NAO extremes. We therefore conclude that a
dynamical systems approach provides complementary information to an NAO-based analysis.

Our results are also in good agreement with a previous analysis by Vannitsem [2001]. The author studied the
local stability properties of the flow in a quasi-geostrophic model and used them in combination with a
clustering algorithm to define regimes affording high and low medium-range predictability. The analysis
was performed on a global scale and on an idealized model; we nonetheless note that one of the high-
predictability clusters thus identified bears some resemblance in the Atlantic sector with the dipole pattern
we associate here with high predictability (cf. our Figure 1b with cluster CL3 in Vannitsem’s Figure 11).

Our dynamical systems perspective further provides a definition of extreme event which differs from the
standard statistical view formalized by Pickands and Pareto [Pickands, 1975], where extremes are large or
small events with respect to a certain local observable. For complex fields, the dynamical systems approach
can capture the crucial link between large-scale nonstatic phenomena and local effects. In the context of this
study, a more traditional definition of a “geopotential extreme” could be, for example, to compute a
Euclidean distance of daily fields from the long-term mean field and define extremes as days in the top
and bottom percentiles of this distribution. However, if this approach is used, selecting a similar number of
occurrences as for the dynamical extremes, the link between the geopotential extremes and the predictabil-
ity of temperature extremes over Europe is weak (see Figure S4 and Text S2).

On the contrary, the dynamical extremes provide a strong predictability pathway for wintertime temperature
extremes over the European continent at time scales of up to a week. This is underscored by the significant
modulation of regional temperature extremes associated with dynamical extremes. In this respect, we
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highlight that a forecast of a decreased probability of an extreme can be as valuable societally and economic-
ally as the forecast of an increased probability of an extreme. The link between dynamical extremes and cold
spells is therefore important, even though the extremes systematically correspond to decreased occurrences
of low temperatures. An additional analysis considering states with low d and low θ separately (not shown)
highlights that, in general, persistence provides a better indication of predictability than instantaneous
dimension. This suggests that the rapidity with which nearby trajectories diverge from a neighborhood is
typically, but not always, more relevant than their maximum spread while doing so. The insights provided
by the two dynamical systems metrics can complement the information issued by deterministic and ensem-
ble forecasts, which are currently used by many national emergency response services [e.g., Sene, 2008]. The
same metrics could be further used as diagnostic tools to assess the flow-dependent skill of current
operational ensemble forecast products. Finally, future forecast systems could use the values of d and θ to
determine the optimal resolution and ensemble size for a given initialization step.

The analysis presented in this study points to several pathways for future research. Keeping the focus on the
North Atlantic, it is necessary to verify whether the low d and θ states which do not agree with the sign of the
geopotential height anomaly composite actually correspond to a separate cluster in phase space relative to
the ones that do. This would allow for a more accurate quantification of the predictability afforded by the
dynamical extremes. More generally, the methodology we adopt could be applied to domains which, unlike
the North Atlantic, might not have a clearly recognizable dominant mode of atmospheric variability. An
obvious caveat is that there is no guarantee that dynamical extremes will be associated with a given class
of weather extremes over a specific geographical domain, meaning that this technique might not always
be appropriate for targeted regional studies. At the same time, we note that the dynamical systems metrics
provide a general information about atmospheric trajectories, meaning that their use can be extended to
predictability problems unrelated to extreme events. On the more technical side, it will be necessary to
provide a robust quantification of the typical predictability horizon afforded by the dynamical systems
perspective, by performing a comprehensive analysis on the variability of d and θ and their covariance.
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